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Principal Investigator(s): Reger, J. L. (1)

Co-Investigator(s}: Hammel, R. L. (Program Manager/TRW) (2),

Wuenscher, H. (3), Yates, I. C. (Project Engineer) (4)

Affiliatlon(s): (1) During Apollo 14: TRW Systems Group, Redondo

Beach, California, Currently: Unknown; (2) TRW Systems Group,

Redondo Beach, California; (3,4) During Apollo 14: National

Aeronautics and Space Administration (NASA), Marshall Space

Flight Center (MSFC), Huntsville, Alabama; (3) Currently:

Unknown; (4) Currently: Retired

Experiment Origin: USA

Mission: Apollo 14

Launch Date/Expt. Date: February 1971

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Science Demonstration, Apollo Command Module

Payload

Processing Facility: A hand-held electric heater which accepted

sealed capsules containing sample materials

Builder of Processing Facility: Heater and solidification cap-

sules were provided to investigators by NASA Marshall Space

Flight Center, Huntsville, Alabama.

Experiment:

Composite Castinq- Part III: Paraffin-Based Immiscible Samples

<Note: A total of eleven samples were processed during the Com-

posite Casting Experiment. The evaluation of three of the

samples (denoted by the investigators as "Part III" of the

experiment) is discussed here. Discussion of the other eight

samples can be found in Chapter 5 under Fabiniak, Apollo 14;

Peters, Apollo 14; Steurer, Apollo 14.>

This Apollo 14 composite casting experiment (Part III) was the

first in a series of investigations designed by Reger et al. to

study the solidification of immiscible alloys under low-gravity

conditions. The specific objective of the experiment was to ex-

amine the potential for forming unique immiscible materials dis-

persions in the reduced gravity environment.

Three experiment capsules were prepared prior to the Apollo 14

flight. The first contained immiscible liquids, the second con-

tained immiscible liquids and a gas, and the third contained im-

miscible liquids and a solid. During the mission, each sample

was placed in an electric heater and warmed for I0 minutes. The

heater was shaken by hand to mix the materials. Solidification

took place when the heater and sample were placed in a heat sink.
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TRW conducted post-flight evaluation of the three samples and

compared them to Earth-processed control samples.

The first sample was composed of paraffin and sodium acetate.

Evaluation of the ground-based sample indicated clear segregation

of the two liquids. In contrast, the flight sample exhibited only

a partial segregation; some dispersion of sodium acetate in

paraffin and paraffin in sodium acetate could be observed.

The second sample was composed of paraffin, sodium acetate, and

argon. The ground-based sample experienced complete segregation

of paraffin and sodium acetate. In contrast, the flight sample

experienced an almost complete dispersion of paraffin and sodium

acetate. It was noted that an appreciable gas dispersion was not

observed in the flight sample.

The third sample was composed of paraffin, sodium acetate, and

tungsten microspheres. The ground-based sample experienced a

high degree of segregation. In contrast, the flight sample ex-

perienced three types of sodium acetate, paraffin, and tungsten

dispersions.

Reportedly, none of the three samples exhibited homogeneous

material or phase distributions.

Additional information concerning the detailed analyses of each

sample can be found in the references listed below.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Immiscible Fluids, Melt and Solidification, Segregation,

Density Difference, Liquid Mixing, Dispersion, Liquid/Liquid Dis-

persion, Liquid/Gas Dispersion, Solid/Liquid/Gas Dispersion, Par-

ticle Dispersion, Multiphase Dispersion, Multiphase Media,

Liquid/Gas Interface, Solid/Liquid Interface, Liquid/Liquid In-

terface, Stirring of Components

Number of Samples: three

Sample Materials: (i) 50 volume % paraffin and 50 volume % sodium

acetate (a tungsten mixing pellet was included); (2) 40 volume %

paraffin, 40 volume % sodium acetate trihydrate, 20 volume % ar-

gon (a tungsten mixing pellet was included); (3) 40 volume %

paraffin, 40 volume % sodium acetate trihydrate, and 20 volume %

100-micron diameter tungsten microspheres (a tungsten mixing pel-

let was included).

(Ar*,W*)
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Container Materials: unknown

Experiment/Material Applications:

In addition to examining basic solidification phenomenon in low

gravity, this experiment sought to determine if immiscible mix-

tures of liquids, liquids and solids, or liquids and gas would

disperse uniformly in low gravity.

References/Applicable Publications:

(I) Yates, I. C.: Apollo 14 Composite Casting Demonstration. In

Process Engineering Research at MSFC, Research Achievements

Review, Vol. IV, Report No. 7, Marshall Space Flight Center,

Alabama, NASA TM X-64723, February 1973. (post-flight)

(2) Reger, J. L. : Low Gravity Processing of Immiscible

Materials. 23rd International Astronautical Federation, Interna-

tional Astronautical Congress, Vienna, Austria, October 8-15,

1972, 9 pp. (post-flight)

(3) Yates, I. C. , Jr. : Apollo 14 Composite Casting

Demonstration-Final Report. NASA TM X-64641, October 1971.

(4) Reger, J. L. and Yates, I. C.: Preparation of Metallurgical

Properties of Low Gravity Processed Immiscible Materials.

Presented at the AIAA 12th Aerospace Sciences Meeting, January

30-February i, 1974, Washington, D.C.

(5) Input received from Co-Investigator R. L. Hammel, May 1991.

Contact(s):
R. L. Hammel

Bldg. R-4
Room 2190

TRW

One Space Park Drive

Redondo Beach, CA 90278
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Prinolpal Investlgator(s) : Reger, J. L. (1)

Co-Investlgator(s) : Larson, D. J., Jr. (officially not a Co-

Investigator) (2)

Affiliatlon(s): (1) During Skylab: TRW Systems Group, Redondo

Beach, California, Currently: Unknown; (2) Grumman Aerospace Cor-

poration, Bethpage, New York

Experiment Origin: USA

Mission: Skylab, SL-3, Second Manned Mission

Launch Date/Expt Date: September 1973 (month experiment was

completed)

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Materials Processing Facility (MPF) panels located

forward from the Multiple Docking Apparatus (MDA) area, Skylab
Manned Environment

Processing Facility: Multipurpose Electric Furnace System (MEFS)

Builder of Processing Facility: Westinghouse Astronuclear

Laboratory, Large, Pennsylvania

Experiment:

Immiscible Alloy Compositions (M557)

When certain multi-component metallic systems are cooled below a

particular temperature (the consulate temperature), they separate

because of compositional density differences of system components

(similar to the behavior of oil and water). When such immiscible

systems are solidified on Earth, useful materials exhibiting a

matrix containing a fine, homogeneous dispersion of the second

phase rarely result.

This Skylab SL-3 experiment was the second in a series of inves-

tigations designed by Reger et al. to study the solidification of

immiscible alloys under low-gravity conditions (see Reger, Apollo

14). The specific objectives of the experiment were to determine

(I) if gravity-induced sedimentation and buoyancy would be

reduced during space solidification of the alloys and (2) if the

resulting material would exhibit a fine dispersion of the

minority phase.

Prior to the mission, three stainless steel sample cartridges

were prepared. Each cartridge was configured with three ampoules

which each contained one sample material (nine total samples):

(i) Pb-45.06 wt.% Zn-9.89 wt.% Sb, (2) Au-23.15 wt.% Ge, and (3)

Pb-14.80 wt.% In-15.00 wt.% Sn. Samples of type (i) and (2) were

contained in stainless steel ampoules and samples of type (3)

were contained in quartz ampoules.
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During the SL-3 mission, the samples in the three cartridges were

processed simutaneously using the M-518 Multipurpose Electric

Furnace. Samples of type (i) and (2) (Pb-Zn-Sb and Au-Ge) were

processed isothermally: heated to 720 °C and soaked at this tem-

perature for 4 hours before passive cooling took place. (This

soak temperature was selected because it was above the consulate

temperature of the Pb-Zn-Sb sample.) The soak period was suffi-

ciently long to allow diffusion and complete mixing of the ele-

ments. Samples of type 3 (Pb-In-Sn) were directionally

solidified by heating the material such that one end was not al-

lowed to melt. Thus, when the furnace was cooled, the sample

solidified directionally from the cold end. Two samples of each

alloy (one solidified vertically and the other horizontally) were

processed on Earth as control samples and used for comparison.

Post-flight analysis revealed that reduced-gravity processing of

the Au-Ge samples resulted in a more random distribution of Ge

than in the corresponding l-g specimens. When the space

processed specimens were compared to a sample cooled at a much

faster rate during KC-135 low-gravity aircraft experiments, it

was concluded that solidification rate has a significant effect

on the resulting microstructure. X-ray diffraction studies of

the low-gravity specimens revealed diffraction lines of unknown

origin: these lines did not match with known diffraction lines

from the system. Studies indicated that the Skylab specimens su-

perconducted at 1.5 K (weak signals) but that the l-g specimens

exhibited no superconducting behavior. Resistivity measurements

(Leeds four point probe) indicated a more uniform resistivity for

the low-gravity samples than that of the l-g samples.

The l-g processed Pb-Zn-Sb samples showed significant segrega-

tion, whereas the low-gravity samples showed a more uniform dis-

persion. Further examination of the Skylab samples revealed that

the Zn was the primary matrix material with Pb as the dispersant.

Sb was primarily associated with the Zn. This was not the case

in the l-g sample. As with the Au-Ge specimens, X-ray diffrac-
tion studies showed lines which could not be matched with those

caused by the elements or related compounds. Superconductivity

measurements indicated that both l-g and low-gravity specimens

exhibited a transition temperature of 7.2 K but the space-

processed samples also showed a second transition at 9.2 K. The

resistivity of the low-gravity samples was reportedly more

uniform than that of the l-g sample.

In general, the microstructure of the directionally solidified

portion of the Pb-Sn-In, Skylab samples were "...finer and of

better quality..." (3, p. 136) than those processed in l-g. X-

ray diffraction studies indicated (unlike the isothermal samples)

that there was no appreciable difference between the l-g and low-

gravity processing. There was a slight increase in the magnetic
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coercive strength of the low-gravity samples over the l-g
processed specimens. Further examination indicated that the
space-processed, Pb-Sn-In samples "...were found to have thinner
lamellae (...[about]... 1 micron) than samples processed in a
ground-based laboratory. Increased magnetic flux pinning by the
Sn-rich phase was indicated from the small sections of the Skylab
samples ([about] 5%) which experienced the most beneficial
solidification conditions. Thinner lamellae, and hence, in-
creased flux pinning, could be obtained by increasing the
solidification rate." (9, p. 6)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-
loys, Binary Systems, Ternary Systems, Melt and Solidification,
Isothermal Processing, Directional Solidification, Density Dif-
ference, Separation of Components, Sedimentation, Segregation,
Precipitation, Diffusion, Diffusive Mass Transfer, Liquid Mixing,
Buoyancy Effects, Dispersion, Homogeneous Dispersion,
Liquid/Liquid Dispersion, Multiphase Media, Solid/Liquid Inter-
face, Liquid/Liquid Interface, Thermal Soak, Thermal Gradient,
Passive Cooling, Solidification Rate, Sample Microstructure,
Lamellar Structure, Superconductivity, Magnetic Properties

Number of Samples: nine

Sample Materials: Two isothermal samples: (i) Au-23.15 wt.% Ge

and (2) Pb-45.06 wt.% Zn-9.89 wt.% Sb; one directional sample:

Pb-14.80 wt.% Sn-15.00 wt.% In.

(Au*Ge*, Pb*Zn*Sb*, Pb*Sn*In*)

Container Materials: isothermal samples: stainless steel;

gradient samples: quartz

Experiment/Material Applications:

Immiscible systems are a unique class of material which cannot be

successfully processed in large quantities on Earth because of

the separation of the liquid constituents before solidification.

Successful processing in space, without compositional sedimenta-

tion due to gravity, could result in mate;ials with unique

electronic or optical properties.

Au-Ge and Pb-Zn-Sb were selected for the isothermal experiments

because (i) Au-Ge alloys exhibit almost complete solid state im-

miscibility and (2) Pb-Zn-Sb exhibits a miscibility gap below a

consulate temperature which could be exceeded by the experimental
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apparatus.

Above the consulate temperature the Pb-Sn-Sb liquid alloy exists

as a single phase. The Pb-Sn-In sample was selected as the

directionally solidified sample because Pb precipitates out as a

second phase and can possibly be preferentially oriented.

References/Applicable Publications:

(I) Naumann, R. J. and Herring H. W.: Experiment M557, Immiscible

Alloy Composites. In Materials Processing in Space: Early Ex-

periments, NASA SP-443, pp. 68-69. (post-flight)

(2) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by

NASA. In Workshop Proceedings of the Measurement and Charac-

terization of the Acceleration Environment on Board the Space

Station, August 11-14, 1986, Guntersville, Alabama, p. 9-1.

(acceleration measurements; post-flight)

(3) Reger, J. L.: Experiment No. M-557 Immiscible Alloy Com-

posites. In Proceedings the Third Space Processing Symposium,

Skylab Results, Vol. I, April 30-May i, 1974, NASA Marshall Space

Flight Center, Alabama, pp. 133-158. (post-flight)

(4) Experiment M558-Radioactive Tracer Diffusion. In MSFC Skylab

Corollary Experiment Systems Mission Evaluation, NASA TM X-64820,

September 1974, pp. 5-56 - 5-62. (post-flight)

(5) M518-Multipurpose Electric Furnace System. In MSFC Skylab

Corollary Experiment Systems Mission Evaluation, NASA TM X-64820,

September 1974, pp. 5-42 - 5-56. (processing facility)

(6) Multipurpose Electric Furnace (M518). In MSFC Skylab Mission

Report-Saturn Workshop. NASA TM X-64814, October 1974, pp. 12-46

- 12-49. (processing facility)

(7) Immiscible Alloy Compositions (M557). In MSFC Skylab Mission

Report-Saturn Workshop, NASA TM X-64814, October 1974, pp. 12-49

- 12-50. (post-flight)

(8) Naumman, R. J. and Mason, D.: Immiscible Alloy Compositions.

In Summaries of Early Materials Processing in Space Experiments,

NASA TM-78240, August 1989, pp. 22-23. (post-flight)

(9) Anderson, W. T. and Reger, J. L.: Superconducting Properties

of Pb-Sn-In Alloys Directionally Solidified Aboard Skylab. In

AIAA 10th Thermophysics Conference, Denver, Colorado, May 27-29,

1975, AIAA Paper No. 75-694. (post-flight)
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(i0) Reger, J. L. and Yates, I. C.: Preparation and Metallurgical

Properties of Low Gravity Processed Immiscible Materials. In

AIAA 12th Aerospace Sciences Meeting, Washington, D.C., January

30-February i, 1974, AIAA Paper No. 74-207. (post-flight)

Contact(s):

Dr. David J. Larson, Jr.

Research Center A01-26

Grumman Corporation

Bethpage, NY 11714-3580
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Principal Investigator(s): Reger, J. L. (1)

Co-Investigator(s): Larson, D. J., Jr. (officially not a Co-

Investigator) (2)

Affiliatlon(s): (1) During Skylab: TRW Systems Group, Redondo

Beach, California, Currently: Unknown; (2) Grumman Aerospace Cor-

poration, Bethpage, New York

Experiment Origin: USA

Mission: Skylab, SL-4, Third Skylab Manned Mission

Launch Date/Expt Date: December 1973 (month experiments were

completed)

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Materials Processing Facility (MPF) panels located

forward from the Multiple Docking Apparatus (MDA) area, Skylab

Manned Environment

Processing Facility: Multipurpose Electric Furnace System (MEFS)

Builder of Processing Facility: Westinghouse Astronuclear

Laboratory, Large, Pennsylvania

Experiment:

Immiscible Alloy Compositions (M557)

This Skylab SL-4 experiment was the third in a series of inves-

tigations designed by Reger et al. to study the solidification of

immiscible alloys under low-gravity conditions (see Reger, Apollo

14; Skylab SL-3). The specific objective of the investigation

was to determine the effects of the space environment on immis-

cible systems which separate during processing on Earth.

During the SL-4 mission, two immiscible alloys (Au-Ge and Pb-Zn-

Sb) were solidified isothermally and one immiscible alloy (Pb-Sn-

In) was solidified directionally within the M-518 Multipurpose

Electric Furnace.

The sample compositions and processing parameters appear to have

been identical to those employed during the Skylab SL-3 experi-

ment (see Reger, SL-3).

<Note: Reference (4) states that the Skylab SL-4 experiment

"...was successfully performed from DOY [Day of Year] 355, 1900

GMT [Greenwich Mean Time] through DOY 357, 2040 GMT." (4, p. 5-

60) However, no publications that discuss the exact experiment

procedure or analysis of these samples could be located at this

time.>
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Ternary Systems, Melt and Solidification,

Isothermal Processing, Directional Solidification, Density Dif-

ference, Separation of Components, Sedimentation, Segregation,

Buoyancy Effects, Diffusion, Dispersion, Homogeneous Dispersion,

Liquid/Liquid Dispersion, Thermal Gradient

Number of Samples: nine

Sample Materials: Two isothermal samples: (i) Au-23.15 wt.% Ge

and (2) Pb-45.06 wt.% Zn-9.89 wt.% Sb; one directional sample:
Pb-14.80 wt.% Sn-15.00 wt.% In.

(Au*Ge*, Pb*Zn*Sb*, Pb*Sn*In*)

Container Materials: isothermal samples: stainless steel;

gradient samples: quartz

(si*o*)

Experiment/Material Applications:

See Reger, Skylab SL-3.

References/Applicable Publications:

(i) Naumann, R. J. and Herring H. W.: Experiment M557, Immis-

cible Alloy Composites. In Materials Processing in Space: Early

Experiments, NASA SP-443, pp. 68-69. (post-flight)

(2) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by

NASA. In Workshop Proceedings of the Measurement and Charac-

terization of the Acceleration Environment on Board the Space

Station, August 11-14, 1986, Guntersville, Alabama, p. 9-1.

(acceleration measurements; post-flight)

(3) Reger, J. L.: Experiment No. M-557 Immiscible Alloy Com-

posites. In Proceedings the Third Space Processing Symposium

Skylab Results, Vol. I, April 30-May i, 1974, NASA Marshall Space

Flight Center, Alabama, pp. 133-158. (post-flight)

(4) Experiment M557-Immiscible Alloy Compositions. In MSFC

Skylab Corollary Experiment Systems Mission Evaluation, NASA TM

X-64820, September 1974, pp. 5-57 - 5-62. (pos_-flight)

(5) M518-Multipurpose Electric Furnace System. In MSFC Skylab

Corollary Experiment Systems Mission Evaluation, NASA TM X-64820,

September 1974, pp. 5-42 - 5-56. (processing facility)

17-12



(6) Multipurpose Electric Furnace (M518). In MSFC Skylab Mission

Report-Saturn Workshop, NASA TM X-64814, October 1974, pp. 12-46

- 12-49. (processing facility)

(7) Immiscible Alloy Compositions (M557). In MSFC Skylab Mission

Report-Saturn Workshop, NASA TM X-64814, October 1974, pp. 12-49

- 12-50. (post-flight)

(8) Reger, J. L. and Yates, I. C.: Preparation and Metallurgical

Properties of Low Gravity Processed Immiscible Materials. In

AIAA 12th Aerospace Sciences Meeting, Washington, D.C., January

30-February I, 1974, AIAA Paper No. 74-207. (post-flight)

(9) Anderson, W. T. and Reger, J. L.: Superconducting Properties

of Pb-Sn-In Alloys Directionally Solidified Aboard Skylab. In

AIAA 10th Thermophysics Conference, Denver, Colorado, May 27-29,

1975, AIAA Paper No. 75-694. (post-flight)

Contact(s):

J. L. Reger

Address Unknown

Dr. David J. Larson, Jr.
Research Center A01-26

Grumman Corporation

Bethpage, NY 11714-3580
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Principal Investigator(s): Lacy, L. L. (1)

Co-Investlgator(s): Otto, G. H. (2), Yates, I. C. (3)

Affiliation(s): (1) During Skylab: National Aeronautics and Space

Administration (NASA), Marshall Space Flight Center (MSFC),

Huntsville, Alabama, Currently: B. J. Services Company, Research

& Technology Center, Tomball, Texas; (2) During Skylab: Univer-

sity of Alabama, Currently: DLR- Cologne, Germany; (3) During SL-

4: NASA Marshall Space Flight Center (MSFC), Huntsville, Alabama,
Currently: Retired

Experiment Origin: USA

Mission: Skylab, SL-4, Third Skylab Manned Mission

Launch Date/Expt. Date: January 1974 (month experiment was
completed)

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Science Demonstration, Skylab Manned Environment

Processing Facility: Hand held apparatus: polycarbonate clear

vials filled with water and oil (brass nut included to mix

liquid)

Builder of Processing Facility: NASA Marshall Space Flight Cen-

ter, Space Sciences Laboratory, Huntsville, Alabama

Experiment:

Immiscible Liquids (SDI9 TVI02)

This Skylab SL-4 experiment was the first in a series of inves-

tigations designed by Lacy et al. to study the low-gravity be-

havior of immiscible systems. The primary objectives of the ex-

periment were to (i) visibly examine the stability of two immis-

cible liquids, and (2) investigate the rate of coalescence of the

liquids after dispersion.

The experimental apparatus used during the Skylab experiment con-

sisted of three transparent plastic (polycarbonate) vials each

containing different mixtures of degassed Krytox 143 AZ oil and

degassed red-colored water. The first vial contained 25 vol.%

oil, the second 50 vol.% oil, and the third 75 vol.% oil. (The

employed fluids had different densities and their fluid

properties had been well characterized.) All three vials were

mounted in a single stainless steel frame.

The fluids within the vials assembly could be separated when an

astronaut took hold of a string attached to the frame and swung

the assembly in a circular orbit. The fluids could then be dis-

persed when the frame was vigorously shaken by the astronaut. (A

small brass nut included in each vial aided the dispersion

process.) A card with parallel black lines was placed behind the

transparent vials to aid in analysis of the liquid separation.
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The Skylab experimental procedure consisted of (i) centrifuging

the vials to separate the liquids, (2) shaking the vials to ob-

tain a dispersion, (3) video-taping the emulsions over a period

of several minutes (immediately after mixing) and (4) sequen-

tially photographing (35 mm) the liquids over a 10-hour period

(to record the coalescence process).

During similar ground-based experiments, high-speed motion pic-

tures were used to photograph the separation process.

Post-flight, the relative stability of the low-gravity and l-g

dispersions were obtained using two methods: (i) determining the

volume fraction of separation between the two liquids (using the

parallel lines of the card placed behind the vials) and (2)

measuring the red color density of the 35 mm transparencies as a

function of time (photodensitometry).

Results from the volume fraction determination indicated the

emulsions of the l-g specimens were highly unstable: significant

separation occurred in the 25% oil mixture after 0.i second with

a comparable separation in the 75% oil mixture after 0.8 second.

Complete separation occurred in both of the l-g samples after 2

and i0 seconds, respectively. (The l-g results from the 50% oil

mixture were intermediate between the 25% and 75% oil mixtures.)

All low-gravity specimens were less separated after i0 hours than

the l-g, 25% oil mixture after 0.i second. It was concluded that

the coalescence rate for the Skylab specimens was reduced to 3 x

10 -6 times that observed on Earth.

The photodensitometry studies also indicated that the low-gravity

dispersions were stable during the 10-hour test period in an

isothermal environment.

Comparison of the Krytox oil-water system to immiscible liquid

metal systems was made using Stokes law and known fluid

parameters. It was determined that the major differences between

these material systems was "...the much larger surface tension

found for liquid metals. An increase in surface tension will

require an increase in the kinetic energy of colliding and sub-

sequently coalescing particles to overcome the larger surface

energies involved. Thus, it is expected that emulsions of metal-

lic liquids should be as stable as the Krytox-water system." (i,

p. 6)
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Binary Systems, Isothermal Processing, Liquid Mixing,

Emulsion, Density Difference, Dispersion, Drops, Droplet Disper-

sion, Liquid/Liquid Dispersion, Stability of Dispersions, Drop

Coalescence, Surface Tension, Surface Energy, Separation of Com-

ponents, Bubble Removal, Liquid/Liquid Interface, Centrifuge,
Buoyancy Effects Diminished

Number of Samples: three

Sample Materials: three different dispersions of oil and red-

colored water (25, 50, and 75 %volume degassed Krytox 143 AZ oil)

Container Materials: polycarbonate plastic vials

Experiment/Material Applications:

Oil and water were chosen as the experimental liquids because

they represent a classic immiscible fluid system. The fluids are
also transparent and well characterized.

References/Applicable Publications:

(1) Lacy, L. L. and Otto, G. H.: The Stability of Liquid Disper-
sions in Low Gravity, AIAA Paper 74-1242. In American Institute

of Aeronautics and Astronautics and American Geophysical Union,

Conference on Scientific Experiments of Skylab, Huntsville,

Alabama, October 30-November i, 1974, 8 pp., NASA supported re-
search. (post-flight)

(2) Lacy, L. L. and Otto, G. H.: Stability of Liquid Dispersions

in Low Gravity. In Material Sciences in Space with Applications

to Space Processing, AIAA Progress Series in Astronautics and

Aeronautics, edited by Leo Steg, Vol. 52, p. 495, 1977.

(3) Lacy, L. L. and Otto, G. H.: The Electrical Properties of

Zero-Gravity Processed Immiscibles. AIAA Paper 74-208, AIAA 12th

Aerospace Sciences Meeting, Washington, D.C., January 30-February
i, 1974.

(4) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by

NASA. In Workshop Proceedings of the MeasuPement and Charac-

terization of the Acceleration Environment on Board the Space

Station, August 11-14, 1986, Guntersville, Alabama, p. 9-1.

(acceleration measurements)
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(5) "TVI02- Immiscible Liquids." In MSFC Skylab Corollary Ex-

periment Systems Mission Evaluation, NASA TM X-64820, September

1974, pp. 7-11 to 7-13. (post-flight)

(6) Naumann, R. J. and Herring, H. W.: "Experiment TVI02, Immis-

cible Liquids." In Materials Processing in Space, Early Experi-

ments, NASA SP-443, 1980. (post-flight)

(7) Bannister, T. C.: Skylab III and IV Science Demonstrations

Preliminary Report. NASA TM X-64835, pp. 8-13. (post-flight)

(8) Immiscible Liquids (SDI9-TVI02). In MSFC Skylab Mission

Report - Saturn Workshop, NASA TM X-64814, October 1974, p. 12-

89.

(9) Input received from Principal Investigator, L. L. Lacy, July

1993.

(i0) Input received from Co-Investigator G. H. Otto, August 1993.

Contact(s):

Dr. Lewis L. Lacy

B. J. Services Company, U.S.A.

Research & Technology Center

11211 FM 2920

Tomball, TX 77375

Dr. G_nther H. Otto

DLR Linder Hohe

D-51147 Koln

Germany
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Prlncipal Investigator(s}: Lacy, L. L. (1), Ang, C. Y. (2)

Co-Investlgator(s}: Unknown

Affillatlon(s): (1) During ASTP: National Aeronautics and Space

Administration (NASA), Marshall Space Flight Center (MSFC),

Huntsville, Alabama, Currently: B. J. Services Company, Research

& Technology Center, Tomball, Texas; (2) During ASTP: The

Aerospace Corporation, Los Angeles California, Currently:
Deceased

Experiment Origin: USA

Mission: ASTP

Launch Date/Expt. Date: July 1975

Launched From: NASA Kennedy Space Center, Florida

Payload Type: ASTP Docking Module Payload

Processing Facility: Multipurpose electric gradient furnace lo-

cated in the ASTP docking module

Builder of Processing Facillty: Unknown, possibly Westinghouse

Astronuclear Laboratory, Large, Pennsylvania

Experiment:

Monotectic and Synthetic Alioys _MA-044)

This ASTP experiment was the second in a series of investigations

designed by Lacy et al. to study the low-gravity behavior of im-

miscible systems (see Lacy, Skylab SL-4). The specific objec-

tives of the space research were to (i) study the phase segrega-

tion of the immiscible binary system Pb-Zn and (2) determine the

effects of low-gravity processing on the microstructural

homogeneity and stoichiometry of an AlSb semiconductor compound.

Prior to the mission, three identical samples of the following

two compositions were prepared for the experiments: (i) 20 at.%

Pb - 80 at.% Zn and (2) 50 at.% A1 - 50 at.% Sb (intermetallic

composition). Three stainless steel cartridges, each containing

two graphite ampoules (one sample per ampoule), held the six

samples. Each AlSb sample was contained in an ampoule 11.9 mm in

diameter, 29.0 mm long and each Pb-Zn sample was contained in an

ampoule 9.9 mm in diameter, 19.0 mm long. The three cartridges

were configured into three cavities within the ASTP Multipurpose

Electric Furnace. Each of these three cavities had a short hot

zone and longer gradient zone.

During the first 200 minutes of the space experiments (I) the

AISb samples were heated to 1403 K (50 K above the melt

temperature) and (2) the Pb-Zn samples were heated to 1108 K (40

K above the consulate temperature). After the desired tempera-

tures were reached, the samples were subjected to an isothermal

soak for 1 hour. This soak was followed by a 6.5 hour cool-down

period of all samples. (See Reference (4) for a plot of the

samples' thermal history.) Ground-based tests were also per-
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formed using similar samples and thermal histories.

Post-flight characterization of the samples included (i) metal-
lography, (2) quantitative microstructural analysis, (3) scanning
electron microscopy, (4) energy dispersive X-ray analysis, (5)
electrical resistivity measurements, (6) X-ray diffraction, (7)
chemical analysis, and (8) ion-microprobe mass analysis.

Analysis of the AlSb samples revealed that the low-g samples had
significantly more macroscopic and microscopic homogeneity than
the l-g samples. Specifically, the low-g samples contained 4 to
20 times less unwanted secondary phase than the l-g material.
Major grains of an Al-rich or Sb-rich phase were present in the
l-g samples while the space-processed material contained only
small amounts of an Al-rich phase. Analysis of the diffusion and
liquid-state homogenization in the l-g and low-gravity samples
indicated that convection induced by gravity resulted in composi-
tional and microstructural inhomogeneity during solidification.

Although the Pb-Zn material was soaked 40 K above the reported
consulate temperature, incomplete liquid-state mixing was ob-
served in the low-gravity samples. A fine particle dispersion of
Pb in the Zn matrix was indicated, but the majority of the Pb
remained in its original position. It was suspected that the ac-
cepted phase diagram for the Pb-Zn system may have contained a
significant inaccuracy. Further research (see Reference (i0))
indicated that the accepted miscibility curve between 20 at.% Zn
and 70 at.% Zn is as much as 20 °C too low. Also, the quasi-
solid-sta_e d_ffusion coefficient of Pb into Zn was found to be
2.4 x i0- cm /sec, which was about two orders of magnitude smal-

ler than that expected from l-g experiments. Therefore, it is

possible that the melt was never completely mixed during the low-

gravity experiment.

<Note: Further details of the analysis and results for all

samples may be located in Reference (4).>

Key Words: Systems Exhibiting a Miscibility Gap, Melt and

Solidification, Directional Solidification, Immiscible Alloys,

Monotectic Compositions, Intermetallics, Binary Systems, Diffu-

sion, Diffusion Coefficient, Segregation, Phase Segregation,

Buoyancy-Driven Convection, Composition Distribution, Dispersion,

Liquid/liquid Dispersion, Particle Dispersion, Liquid Mixing,

Sample Homogeneity, Multiphase Media, Liquid/Liquid Interface,

Solid/Liquid Interface, Thermal Soak, Thermal Gradient, Sample

Microstructure, Grain Structure, Superconductivity, Semiconduc-

tors, Electronic Materials, Incomplete Sample Processing
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Number of Samples: six

Sample Materials_ three samples each of (i) 20 at.% Pb - 80 at.%

Zn and (2) 50 at.% A1 - 50 at.% Sb (AISb intermetallic)

(Pb*Zn*, AI*Sb*)

Container Materlals: graphite ampoules with stainless steel

cartridges

(c*)

Experiment/Material Applications:

The Pb-Zn material (like the AlSb alloy) was chosen because sig-

nificant specific gravity differences between the components

prevent adequate mixing on Earth. Reducing the effects of

gravity could lead to a fine dispersion of superconducting Pb

particles within the Zn matrix. (Pb-Zn is also a good material

for modeling the behavior of immiscible systems.)

AlSb may be a more efficient solar cell material than commonly-
used silicon.

References/Applioable Publications:

(i) Ang, C. Y. and Lacy, L. L.: Gravitational Influences on the

Liquid-State Homogenization and Solidification of Aluminum An-

timonide. Metallurgical Transactions A, Vol. 10A, May 1979.

(2) Lacy, L. L. and Ang, C. Y.: Low Gravity Homogenization and

Solidification of Aluminum Antimonide. In Material Sciences in

Space with Applications to Space Processing, AIAA Progress Series

in Astronautics and Aeronautics, Edited by Leo Steg, Vol. 52, p.

523, 1977.

(3) Lacy, L. L. and Trahan, J. F.: Determination of Liquid Phase

Immiscibility in the Lead Zinc System. Material Science and En-

gineering, Vol. 33, p. 249, 1978.

(4) Lacy, L. L. and Ang, C. Y.: Monotectic and Synthetic Alloys.

In Apollo Soyuz Test Project Summary Science Report, Vol. i, NASA

SP-412, pp. 403-428, 1977. (post-flight)

(5) Boese, A., McHugh, J., and Seidensticker, R.: Multipurpose

Electric Furnace. In Apollo-Soyuz Test Project Summary Science

Report, Vol. I, NASA SP-412, pp. 353-365 (post-flight)

(6) Lacy, L. L. and Ang, C. Y.: Monotectic and Synthetic Alloys

Experiment MA-044. In Apollo-Soyuz Test Project-Composite of

MSFC Final Science Report, NASA TM X-73360, January 1977, pp. IV-

1 - IV-51. (post-flight)
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(7) Naumann, R. J. and Mason, E. D.: Monotectic and Synthetic

Alloys. In Summaries of Early Materials Processing in Space Ex-

periments, NASA TM-78240, August 1979, pp. 58-59. (post-flight)

(8) Input received from Principal Investigator L. L. Lacy, July
1993.

Contact(s):

Dr. Lewis L. Lacy

B. J. Services Company, U.S.A.

Research & Technology Center
11211 FM 2920

Tomball, TX 77375
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Principal Investigator(s): Larson, D. J., Jr. (i)

Co-Investigator(s): Unknown

Affiliation(s): (1) Grumman Aerospace Corporation, Bethpage, New

York

Experiment Origin: USA
Mission: ASTP

Launch Date/Expt. Date: July 1975

Launched From: NASA Kennedy Space Center, Florida

Payload Type: ASTP Docking Module Payload

Processing Facility: Multipurpose Electric Furnace (gradient

furnace) located in the ASTP docking module

Builder of Processing Facility: Westinghouse Astronuclear

Laboratory, Large, Pennsylvania

Experiment:

Zero-G Processinq of Maqnets (MA-070)

Gravity-induced convection currents, produced during the direc-

tional solidification of eutectic alloys on Earth, contribute to

microstructural imperfections in the rod or lamellar structure.

In the low-gravity environment (i) the strength of such currents

should be reduced and (2) the processing of eutectics with in-

creased magnetic coercivity may be possible.

This experiment was the first in a series of investigations

designed by Larson to study the directional solidification of

magnetic components in the space environment.

The experiment was performed in three furnaces, each of which

housed a single cartridge. Within each cartridge was a "Type 1

Ampoule," a "Type 2 Ampoule," and a "Type 3 Ampoule."

Reportedly, (i) each Type 1 Ampoule was constructed of pyrolytic

boron nitride and contained 50 at.% Bi, 50 at.% Mn, (2) each Type

2 Ampoule was constructed of pyrolytic boron nitride and con-

tained 8 at.% Ce, 92 at.% Cu and Co, and (3) each Type 3 Ampoule

was constructed of fused silica and contained 97.8 at.% Bi, 2.2

at.% Mn. (The Type 3 Ampoules were backfilled with argon to

"...suppress the possibility of thermal cavitation of the

bismuth-rich liquid.") (i, p. 456)

The experiment operating scenario was planned based on thermal

results from a prototype test. "It was anticipated that the

thermal environment for ampoule i... would be essentially

isothermal over the temperature range of solidification. Ampoule

2 was expected to be exposed to a thermal gradient of 30... [plus

or minus] 2 K/cm and ampoule 3 to a thermal gradient of 60 [plus

or minus] 3 K/cm." (i, p. 451) Reportedly, the samples were

heated to the operating temperature, held at this temperature for
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45 minutes, and then solidified by helium injection.

Reportedly, the flight samples were "...exposed to conditions

substantially different from planned conditions .... " (i, p. 451).

For example (i) "The temperature gradient for ampoule 2...

[varied] from approximately 30 K/cm at the onset of directional

solidification to 23.5 K/cm at the conclusion of solidification"

(I, p. 451) and (2) "The thermal gradient [in ampoule 3] during

the period of maximum superheating was 80 K/cm; however, during

the period of solidification, it varied from only 10.9 K/cm at

the onset to 8.9 K/cm at the conclusion." (i, p. 451).

A detailed discussion of the objectives and results of each am-

poule type in terms wetting behavior was presented in Reference

(i). In general, it was reported that "Fluid static configura-

tions in a low-g environment were appreciably different than in

one-g, but were found to agree well with theory." (i, p. 469).

Post-flight it was reported that "...directional solidification

was not achieved in the type 2 samples [Type 2 Ampoules], and the

magnetic properties of the ground-based and flight samples were

essentially the same." (i, p. 463) However, "The samples of 50

atomic percent (at.%) Bi-50 at.% Mn [Type 1 Ampoules] solidified

in the low g environment demonstrated a substantial improvement

in the macroscopic chemical homogeneity. The Bi/MnBi direc-

tionally solidified eutectic flight samples exhibited markedly

superior magnetic properties. Intrinsic coercive strengths in

excess of 14 722 kA/m (185 kOe) have been measured in the low g

processed samples at a temperature of 77K. This strength exceeds

the maximum previously published value (8992 kA/m (ll3kOe)) by 64

percent. The average value of inductance was improved by 76 per-

cent and the energy product by 57 percent." (i, p. 449) Further

discussions of the magnetic analysis are presented in Reference

(1).

Among the experimental conclusions reported were:

(i) "Macroscopic chemical segregation due to gravitationally de-

pendent buoyancy forces is minimal in low gravity." (i, p. 469)

(2) "The number and size distribution of orbitally processed

primary crystals is significantly different in the flight

samples." (i, p. 469)

(3) "The intrinsic coercive strengths of as-grown low-g MnBi/Bi

eutectic samples greatly exceed any values previously reported

for this magnetic composite (>60 percent)." (i, p. 469)
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(4) "The solidification product from the orbital processing of

the Bi/MnBi faceted rod eutectics differs in particle size and

shape, lattice parameter, and magnetic properties from equiv-

alently processed terrestrial samples." (i, p. 469)

Experiments related to this research can be found under Pirich,

SPAR 6 and 9 (this chapter).

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Eutectics, Faceted Eutectics, Magnetic Composites, Binary

Systems, Ternary Systems, Melt and Solidification, Directional

Solidification, Thermal Gradient, Isothermal Processing, Thermal

Soak, Superheating, Quench Process, Segregation, Buoyancy Ef-

fects, Particle Dispersion, Particle Size Distribution, Wetting,

Wetting of Container, Sample Homogeneity, Thermosolutal Convec-

tion, Buoyancy-Driven Convection, Buoyancy Effects Diminished,

Solid/Liquid Interface, Sample Microstructure, Lamellar Struc-

ture, Rod Structure, Magnetic Properties, Brittleness, Processing

Difficulties

Number of Samples: nine

Sample Materials: Type 1 Ampoules: 50 at.% Bi, 50 at.% Mn; Type 2

Ampoules: 8 at.% Ce, 92 at.% Cu and Co; Type 3 Ampoules: 97.8

at.% Bi, 2.2 at.% Mn.

(Mn*Bi*, Ce*Cu*Co*)

Container Materials: Ampoule Types 1 & 2: pyrolytic boron

nitride; Ampoule Type 3: fused silica (quartz)

(B,N*, Si*O*)

Experiment/Material Applications:

"Because of the brittleness and reactivity of most magnetic com-

pounds, powder metallurgy techniques principally have been used

to fabricate high-coercive strength magnets. Casting and

solidification techniques have been possible only in a limited

number of systems.

"Fabrication of high-coercive strength magnet materials from the

liquid state could lead to a marked reduction in processing steps

and hence in cost. The magnets would have theoretical density,

the fine particles would be protected from environmental attack,

the magnets would have a high degree of particle... [alignment],

and the magnets would only require a minimal amount of final
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machining .... " (i, p. 450)

References/Applicable Publications:

(i) Larson, D. J., Jr.: Zero-G Processing of Magnets. In Apollo-

Soyuz Test Project, Summary Science Report, Vol. I, NASA SP-412,

pp. 449-470. (post-flight)

(2) Boese, A., McHugh, J., and Seidensticker, R.: Multipurpose

Electric Furnace. In Apollo-Soyuz Test Project, Summary Science

Report, Vol I, NASA SP-412, pp. 353-365. (post-flight)

(3) Larson, D. J.: Zero-G Processing of Magnets; Experiment MA-

070. In Apollo-Soyuz Test Project-Composite MSFC Final Science

Report, NASA TM X-73360, January 1977, pp. VI-I - VI-53. (post-

flight)

(4) Prototype Test Report for MA-010 Experiment Cartridges.

Tech. Rep. WANL-TME-2867, Westinghouse Electric Corp.,

Astronuclear Lab., May 1975. (hardware description)

(5) Naumann, R. J. and Mason, E. D.: Zero-G Processing of Mag-

nets. In Summaries of Early Materials Processing in Space Ex-

periments, NASA TM-78240, August 1979, p. 62-63. (post-flight)

(6) Larson, D. J. and Pirich, R. G.: Low-G Bridgman Growth of

Eutectic MnBi/Bi Magnetic Composites. Fourth American Conference

of Crystal Growth, NBS, Gaithersburg, Maryland, July 1978.

(7) Pirich, R. G., Larson, D. J., and Busch, G.: Magnetic and

Metallurgical Properties of Directional Solidified Eutectic

MnBi/Bi Composites: The Effect of 0-g and Anneal. 24th Con-

ference on Magnetic Materials, Cleveland, Ohio, November 1978.

Contact(s):

Dr. David J. Larson, Jr.

Research Center A01-26

Grumman Corporation

Bethpage, NY 11714-3580
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Prlncipal Investlgator(s}: Larson, D. J., Jr. (1)

Co-Investlgator(s): Wilcox, W. R. (2)

Affillatlon(s): (1) Grumman Aerospace Corporation, Bethpage, New

York; (2) Clarkson University, Potsdam, New York

Experiment Origin: USA

Mission: STS Launch #18, STS-025 (STS 51-G, Discovery)

Launch Date/Expt. Date: June 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Middeck Experiment

Processing Facillty: Automated Directional Solidification Furnace

(ADSF-1, low temperature version)

Builder of Processing Facillty: Originally built for the SPAR

program by General Electric (GE) Corporation, Large,

Pennsylvania; Refurbished by GE and then NASA Marshall Space

Flight Center, Huntsville, Alabama

Experiment:

Directional Solidification of Magnetically Aliqned BiMn Alloy

(ADSF-I)

This investigation was the second in a series of experiments

designed by Larson to study the directional solidification of

magnetic composites in the space environment (see Larson, ASTP).

(Also related to this research are the experiments of Pirich,

SPAR 6 and SPAR 9, and Bethin, SPAR i0 which all can be found in

this chapter.)

During the mission, four modules within the Automated Directional

Solidification Furnace (ADSF) were employed to process both

eutectic and off-eutectic Bi/MnBi magnetic composites. The ADSF

was programmed to automatically process the samples over a period

of 3 days, largely during astronaut sleep periods. While a fur-

nace temperature of 485 °C and a thermal gradient of ap-

proximately i00 °C/cm was desired for all of the samples, varying

furnace translation rates were chosen for each of the modules.

Post-flight analysis of the telemetry record indicated that only

one of the furnaces had translated from its starting position.

This sample, which was successfully directionally solidified, had

a constant furnace translation rate of 0.64 cm/h. "The other

samples were melted, held at temperature for long periods, and

radially[sic] cooled (furnace cooled)... [F]or each of the cases

without translation there is only a record of the furnace "hold"

temperature and no record of the sample cooling rate that oc-

curred when the furnaces were cooled. Thus, the samples that did

not translate offer only a record of a fluid static geometry and

some possible qualitative observations regarding morphology." (2,

p. 13). Analysis efforts centered, therefore, on the direc-

17-26



tionally solidified, translated sample.

The flight sample was compared to samples processed on Earth.

The actual thermal gradient impacted to the translated flight

sample was calculated to be 124 °C/cm, (higher than the ground-

based gradient, 107 °C/cm). This higher gradient was attributed

to a reduction of convective flow in the low-gravity environment.

The STS sample, which had a nonwetting melt/crucible configura-

tion, was found to have increased porosity over ground-processed

samples. The sample microstructure exhibited a longitudinal mac-

rosegregation pattern that was "...consistent with theoretical

models for diffusion-controlled growth. These data support the

conclusion that the thermosolutal convection (lighter solute

rejected ahead of the advancing solidification interface), ex-

perienced during ground-based solidification, has been effec-

tively damped by the microgravity environment and that diffusion-

controlled growth has been achieved.

"However, the region of two-phase, steady-state, diffusion-

controlled growth was not isocompositional, as anticipated from

theory." (2, p. vi) It was concluded that Soret diffusion was

responsible for this macrosegregation. It was noted that in-

creased suppression of the convective currents could be achieved

by orienting the sample to reduce orbiter residual gravity con-
tributions.

"Extensive ground-based experiments were conducted attempting to

damp the thermosolutal convection or minimize its influences.

These included growth orientation relative to gravity, thermal

gradient variation (longitudinal and radial), velocity variation,

and applied magnetic fields. None have approached diffusion-

controlled growth, and the magnetic fields were detrimental,

causing increased convection. As a consequence, we have con-

cluded that the flight result is unique." (5, p. vi)

Further discussion of the three non-translating samples was not

provided.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Eutectics, Faceted Eutectics, Magnetic Composites, Binary

Systems, Two-Phase System, Melt and Solidification, Directional

Solidification, Bridgman Technique, Thermal Gradient, Thermal

Soak, Furnace Translation, Segregation, Macrosegregation, Wet-

ting, Non-Wetting of Container, Buoyancy Effects, Homogeneity,

Thermosolutal Convection, Buoyancy-Driven Convection, Buoyancy

Effects Diminished, Diffusion, Soret Diffusion, Diffusion-
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Controlled Growth, Multiphase Media, Composition Distribution,

Solid/Liquid Interface, Translation Rate, Sample Microstructure,

Porosity, Thermal Environment More Extreme Than Predicted, Ac-

celeration Effects, Magnetic Fields, Processing Difficulties,
Hardware Malfunction

Number of Samples: four

Sample Materials: bismuth-manganese (Bi/MnBi) (The specific

composition of each of these samples was not detailed.) <Note:

Although the Principal Investigator reported that Reference (5)

listed the specific compositions of each of the samples, these

compositions could not be resolved from Reference (5).>
(Bi*Mn*Bi*)

Container Materials: unknown

Experiment/Material Applications:

These investigations and subsequent space experiments hope to

"...demonstrate the feasibility of producing improved magnetic
composite materials for commercial use. These materials could

lead to smaller, lighter, stronger and longer-lasting magnets for

electrical motors used in aircraft and guidance systems, surgical

instruments and transponders." (1, p. 22.)

References/Applicable Publications:

(I) Space Shuttle Mission 51-G. NASA Press Kit, June 1985, p.
22. (preflight)

(2) Larson, D. J., Jr., Bethin, J., and Dressler, B. S.: Shuttle

Mission 51-G, Experiment MPS77F075, Flight Sample Characteriza-

tion Report. Report RE-753, August 1988, Grumman Corporate Re-

search Center, 43 pp. (post-flight)

(3) Automated Directional Solidification Furnace (ADSF): A Space

Shuttle Materials Processing Middeck Payload. Document Developed

by Teledyne Brown Engineering under the direction of the Applica-

tion Payload Projects, Spacelab Payload Projects Office, Marshall

Space Flight Center, Huntsville, Alabama. (processing facility

and preliminary post-flight experiment results_
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(4) Automated Directional Solidification Furnace. In

Microgravity Science and Applications Experiment Apparatus and

Facilities, document developed by the Commercialization of

Materials Processing in Space Group, Program Development Direc-

torate, Marshall Space Flight Center, pp. 6-7. (processing

facility)

(5) Larson, D. J., Jr. and Thompson, B. S.: Off-Eutectic Bi/MnBi

Solidification and Soret Transport. Research Report RE- Volume

2, Solid State Physics Research Directorate, Grumman Corporate

Research Center, Bethpage, New York, Final Report on Experiment

MPS77F075, 41 pp. (post-flight)

(6) Input received from Principal Investigator D. Larson, August

1993.

Contact(s):

Dr. David J. Larson, Jr.

Research Center A01-26

Grumman Corporation

Bethpage, NY 11714-3580

Dr. William R. Wilcox

126 Old Main Bldg.

Clarkson University

Potsdam, NY 13699
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Principal Investigator(s): Larson, D. J., Jr. (i)

Co-Investigator(s): None

Affiliatlon(s): (1) Grumman Aerospace Corporation, Bethpage, New

York

Experiment Origin: USA

Mission: STS Launch #26, STS-26

Launch Date/Expt. Date: September 1988

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Middeck Experiment (entire flight package oc-

cupied the space of five crew lockers in orbiter middeck)

Processing Facility: Automated Directional Solidification Furnace

(ADSF): Four furnace modules each of which processed a single

sample. The ADSF was first used aboard sounding rockets, then

refurbished for orbiter compatibility including an extended

operating time of up to 20 hours.

Builder of Processing Facility: Originally built by General

Electric Corporation, Large, Pennsylvania; refurbished by General

Electric, NASA Marshall Space Flight Center, Huntsville, Alabama

and Teledyne Brown Engineering, Huntsville, Alabama

Experiment:

Directional Solidification of a Magnetic Composite Using the

Automated Directional Solidification Furnace _ADSF)

This experiment was the fourth in a series of experiments

designed by Larson to investigate the directional solidification

of magnetic composites in the space environment (see Larson, ASTP

and STS-025 (this chapter), and STS-032 (Chapter 14)).

Four furnaces, (each capable of processing one Mn-Bi magnetic

composite sample), were housed in the Automated Directional

Solidification Furnace facility. The furnaces were designed to

traverse the samples, processing them at a constant melting and

solidification speed of 1 cm/h. A processing time of 10.5 hours

per sample was expected. Space-produced samples were to be com-

pared to (i) similarly processed Earth-produced samples, (2) ear-

lier processed Shuttle samples (see Larson STS-025 and STS-032)

and (3) earlier processed sounding rocket samples (see Pirich

SPAR 6, SPAR 9, and Bethin, SPAR i0 (all in this chapter)).

Reportedly, "...only one of the experiment's four furnaces trans-

lated, or resolidified, successfully during the ADSF experi-

ment .... " (2, p. i) This furnace "...translated 4.4 cm and then

stopped, holding the last portion of the sample to solidify in

the thermal gradient for approximately 2.5 h before furnace shut-

down. Solidification from this static thermal position would be

described as gradient freeze since the thermal gradient extended

from the stationary solid-liquid interface beyond the end of the
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sample prior to and during cooling." (5, p. 14)

(Reportedly, the non-translated samples were analyzed "...as fur-

nace cooled samples, with gradient freeze and radially cooled

regions rather than as directionally solidified samples." (5, p.

14))

<Note: Reference (5) appears to further discuss results related

to the translated sample, although specific details of the sample

analysis were not clear. Reference (5) stated:>

"The influences of gravitationally-dependent effects on Bridgman-

Stockbarger crystal growth of Bi/MnBi eutectics were investigated

by conducting microgravity damping experiments on the STS-26

flight of the Space Shuttle 'Columbia', and magnetic field damp-

ing experiments at the Grumman Research Center and at the Francis

Bitter National Magnet Laboratory, using transverse and lon-

gitudinal applied magnetic fields, respectively. These test

results were quantitatively compared to undamped one-g baseline

results where the gravitational vector was varied relative to the

solidification direction. Both microgravity processing and ap-

plied magnetic fields were shown to be effective means of damping

the natural gravitationally-dependent convection normally encoun-

tered terrestrially during Bi/MnBi eutectic solidification.

Diffusion-controlled growth during Bridgman-Stockbarger crystal

growth was achieved within the Bi/MnBi eutectic in the course of

the damped experiments." (5, p. iii)

Please refer to Reference (5) for additional information.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Eutectics, Magnetic Composites, Binary Systems, Melt and

Solidification, Directional Solidification, Bridgman Technique,

Thermal Gradient, Furnace Translation, Segregation, Buoyancy Ef-

fects, Homogeneity, Thermosolutal Convection, Buoyancy-Driven

Convection, Buoyancy Effects Diminished, Diffusion, Diffusion-

Controlled Growth, Multiphase Media, Composition Distribution,

Solid/Liquid Interface, Translation Rate, Sample Microstructure,

Magnetic Fields, Hardware Malfunction, Furnace Malfunction,

Processing Difficulties

Number of Samples: four

Sample Materials: manganese-bismuth composites (specific composi-

tions unknown)

(Mn*Bi*)
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Container Materlals: quartz

(si*o*)

Experiment/Materlal Applications:

The investigations were "...designed to demonstrate the pos-

sibility of producing lighter, stronger, and better-performing

magnetic composite materials in a microgravity environment." (1,

p. 26)

See also Larson, STS-025.

References/Applicable Publications:

(i) NASA Press Kit: Space Shuttle Mission STS-26. September 1988,

pp. 26-28. (preflight)

(2) Investigators Examining Every Particle of Data from STS-26

Experiments. In NASA Marshall Star Newspaper, Vol. 29, Number 16,

November 16, 1988, NASA Marshall Space Flight Center, Huntsville,

Alabama, p. i. (post-flight, very short description)

(3) Dumoulin, J. M.: STS-26 Experiment: Automated Directional

Solidification Furnace. NASA Fact Sheet, George C. Marshall

Space Flight Center, June 1988. (preflight)

(4) Seven Marshall Payloads to Fly on STS-26 in June. Marshall

Star, Vol. 28, No. 5, October 7, 1987, pp. 1-2 (preflight; very

short description)

(5) Larson, D. J., Jr. and Thompson, B. S.: Bi/MnBi Eutectic

Solidification. Research Report RE, Volume i, Solid State

Physics Research Directorate, Grumman Corporate Research Center,

Bethpage, New York, Final Report on Experiment MPS77F075, 41 pp.

(post-flight)

(6) Input received from Principal Investigator D. Larson, August

1993.

Contact(s):

Dr. David J. Larson

Research Center A01-26

Grumman Corporation

Bethpage, NY 11714-3580
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Fred Reeves

ADSF Project Manager
FA24

NASA Marshall Space Flight Center, AL 35812
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Principal Investigator(s): Gelles, S. H. (i), Markworth, A. J.

(2)
Co-Investigator(s): Unknown

Affiliation(s): (1) During SPAR 2: Battelle, Columbus, Ohio,

Currently: S. H. Gelles Associates, Columbus, Ohio; (2) Engineer-

ing Mechanics Department, Battelle Memorial Institute, Columbus,
Ohio

Experiment Origin: USA
Mission: SPAR 2

Launch Date/Expt. Date: May 1976

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: FWD (Forward) General Purpose Rocket Furnace

(GPRF)

Builder of Processing Facility: Unknown

Experiment:

Aqqlomeration in Immiscible Liquids (74-3o/i)

Various mechanisms, which result in the agglomeration of liquid

droplets in the host liquid on Earth, are not active in a low-

gravity environment:

(i) gravity-dependent Stokes flow (which is the movement of

droplets caused by density differences between the liquids) and

(2) gravity-induced convection currents (which result in droplet

collisions).

This SPAR 2 experiment was the first in a series of investiga-

tions designed by Gelles et el. to study the low-gravity

solidification behavior of immiscible liquids. The specific ob-

jective of the experiment was to determine the effect of gravity

on the structure of two Al-In alloys when cooled through the mis-

cibility gap at a controlled rate.

Prior to the rocket launch, two Al-In samples were prepared: (I)

AI-40 wt.% In and (2) AI-70 wt.% In. The pure components of each

alloy were placed (In on top of AI, in proper proportion) within

alumina crucibles. (Pure components, rather than an alloy, were

used "...because greater control of the final alloy composition

could be effected in this manner with a system highly prone to

macrosegregation." (8, p. 432)) A thermocouple was included in

the AI-40 wt.% In system. The two crucibles were enclosed in a

stainless steel cartridge and the top cap was welded in place.

The cartridge then was subjected to _ evacuation/He back-filling
process until a final pressure of . x i0 -_ MPa was attained.

Testing indicated no He leakage within detectable levels. (See
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Reference (8) for further sample preparation details.) The

cartridge was placed in one of the three chambers of the SPAR 2

General Purpose Rocket Furnace (GPRF).

Prior to the rocket launch (t = -900 seconds), the samples were

heated to about 950 °C (above the miscibility gap) and held at

this temperature up to 154 seconds into the flight (t = + 154

seconds). (Reportedly, a 970 °C hold temperature was intended,

but this temperature discrepancy was not considered important.)

At t = +154 seconds, cooling of the samples was initiated by a He

gas quench. It was reported that at t = +176, the temperature

was 614 °C and at t = +269 seconds, the temperature was 155 °C.

Some rocket spin characteristics during the mission were

reported. At t = +30 seconds, the rocket was spinning at a rate

of 240 rpm about its longitudinal axis; at t = +60 seconds, a

rapid despin procedure was initiated.

Ground-based experiments were conducted and the terrestrially

processed materials were compared to the flight samples. The

post-flight analysis of the two SPAR samples included

radiographic and metallographic analysis. The following conclu-

sions from these studies were reported:

(i) Examination of the l-g processed samples indicated a layered

structure with Al-rich regions at the top and In-rich regions at

the bottom. A theoretical model to explain the macro- and

microstructures of these samples was provided (see Reference

(2)).

(2) The type of macrostructure which resulted from low-gravity

processing was unexpected: both the 40 wt.% In sample and the 70

wt.% In sample exhibited an annular In region surrounding an AI-

rich core. These results were attributed to fluid flow occurring

in the low-gravity environment. (An analysis of the possible

fluid flow sources within this system was provided.)

(3) Of the fluid flow sources possible in the low-gravity en-

vironment, thermocapillary convection and conventional convection

were probably active. It was suspected that capillary flow also

was active, although this analysis had not yet been completed at

the time the available references were published. It was

reported that fluid motion due to rocket spin was not sig-
nificant.

(4) Calculation of the equilibrium configuration of A1 and In un-

der low-gravity conditions (based on known surface energy data of

the components and estimated interfacial energy data from similar

systems) closely agreed with that found for the flight samples

and other past results.

17-35



(5) Bond number determinations (the ratio of gravity and surface

tension forces) indicated that surface tension forces in this al-

loy system are dominant under low-gravity conditions.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Immiscible Alloys, Metals, Binary Systems, Melt and

Solidification, Homogeneity, Drops, Droplet Agglomeration, Drop

Migration, Stokes Flow, Density Difference, Droplet Collision,

Surface Tension, Surface Energy, Interfacial Energy, Buoyancy-

Driven Convection, Thermocapillary Convection, Surface Tension-

Driven Convection, Marangoni Convection, Capillary Flow, Separa-

tion of Components, Phase Separation, Macrosegregation,

Solid/Liquid Interface, Liquid/Liquid Interface, Quench Process,

Sample Microstructure, Composition Distribution, Acceleration Ef-

fects, Rocket Motion, Superconductors

Number of Samples: two

Sample Materials: (I) aluminum-40 wt.% indium and (2) aluminum-70
wt.% indium

(Al*In* )

Container Materials: alumina, A1203, crucibles contained in

stainless steel cartridge

(AI*O*)

Experiment/Material Applications: Several systems exhibit a liq-

uid phase miscibility gap. Some of these materials may be used

for applications such as electrical contacts, permanent magnets,

or bearings. Potential applications include superconductors, su-

perplastic materials, and catalysts.

References/Applicable Publications:

(i) Gelles, S. H. and Markworth, A. J.: Agglomeration in Immis-

cible Liquids. In Space Processing Applications Rocket Project,

SPAR II Final Report, NASA TM-78125, pp. VI-I - VI-53, November

1977. (post-flight report) /

(2) Toth, S. and Frayman, M.: Measurement of Acceleration Forces

Experienced by Space Processing Applications. Goddard Space

Flight Center, Contract No. NAS5-23438, Mod. 23, ORI, Inc., Tech-

nical Report 1308, March 1978. (acceleration measurements, SPAR

1-4)
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(3) Agglomeration in Immiscible Liquids at Low Gravity. In

Descriptions of Space Processing Applications Rocket (SPAR) Ex-

periments, Edited by R. J. Naumann, NASA TM-78217, January 1979,

pp. 15-16. (post-flight)

(4) Gelles, S. H. and Markworth, A. J.: Microgravity Studies in

the Liquid Phase Immiscible System, Al-In. AIAA Paper 77-122,

January 1977.
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Report to NASA Marshall Space Flight Center, December 1976, Bat-

telle Columbus Laboratories, 56 pp. (post-flight)

(7) Gelles, S. H. and Markworth, A. M.: Agglomeration in Immis-

cible Liquids; Applications of Space Flight in Materials Science

and Technology. Proceedings of a Conference Held at the National

Bureau of Standards, Gaithersburg, Maryland, April 20-21, 1977,

issued September 1978, pp. 25-39. (post-flight)

(8) Gelles, S. H. and Markworth, A. J.: Microgravity Studies in

the Liquid-Phase Immiscible System: Aluminum-Indium. AIAA Jour-

nal, Vol. 16, No. 5, May 1978, pp. 431-438. (post-flight)

(9) Input received from Principal Investigator A. J. Markworth,

June 1993.

Contact(s):

Dr. Stanley H. Gelles

S. H. Gelles Associates

2836 Fisher Road

Columbus, OH 43204

Dr. Alan J. Markworth

Engineering Mechanics Department
Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201-2693
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Principal Investlgator(s): Gelles, S. H. (i), Markworth, A. J.

(2)
Co-Investlgator(s): Unknown

Affiliatlon(s): (1) During SPAR 5: Battelle, Columbus, Ohio,

Currently: S. H. Gelles Associates, Columbus, Ohio; (2) En-

gineering Mechanics Department, Battelle Memorial Institute,

Columbus, Ohio

Experiment Origin: USA

Mission: SPAR 5

Launch Date/Expt. Date: September 1978

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: General Purpose Rocket Furnace (GPRF)

Builder of Processing Facility: Unknown

Experiment:

Agglomeration of Immiscible Liquids (74-3o)

Following the SPAR 2 experiment concerning the solidification of

Al-In alloys (see Gelles, SPAR 2), ground-based studies were con-

ducted on the Al-In system to further investigate the SPAR 2

results and to prepare for the SPAR 5 experiment. These ter-

restrial studies included (i) spin-up and despin experiments

(simulating the spin-up and despin actions of a sounding rocket),

(2) Differential Thermal Analysis (DTA) measurements of equi-

librium kinetics (to determine the homogenization rate of the

liquid Al-In alloys), and (3) Al-In interdiffusion coefficient

determinations. Results from these studies coupled with examina-

tions of the SPAR 2 flight samples, indicated that the massive

separation observed in the SPAR 2 samples may have been due to

the inhomogeneity of the material prior to solidification. It

was suspected that this initial concentration gradient con-

tributed to the observed unexpected segregation.

This SPAR 5 experiment was the second in a series of investiga-

tions designed by Gelles et al. to study the low-gravity

solidification behavior of immiscible liquids (see Gelles, SPAR

2). The specific objectives of the experiment were to (I) deter-

mine if the results from the SPAR 2 investigation were due to

concentration gradients probably present in the samples prior to

the cool down phase and (2) determine if different alloy composi-

tions from those of the SPAR 2 experiment would also show massive

separation.

During the SPAR 5 mission, two chambers of the General-Purpose

Rocket Furnace (GPRF) were used to process four samples: (i) AI-

30 wt.% In, (2) AI-40 wt.% In, (3) AI-70 wt.% In, and (4) AI-90

wt.% In. Samples 2 and 3 were the same compositions processed
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during the SPAR 2 experiment. The sample preparation, cartridge

design, and experimental procedure were essentially the same as

that for the SPAR 2 experiment (see Gelles, SPAR 2) with the fol-

lowing exceptions: (i) a thermocouple was not included in the

cartridge containing the 30 and 90 wt.% In alloys, (2) the sample
hold temperatures were slightly different (about 980 °C for SPAR

5 versus 950 °C for SPAR 2)A and (3) the pre-launch times that

samples were held above 980 vC were different (16 hours for SPAR

5 versus 15 minutes for SPAR 2). A thermocouple was included in

the capsule containing the 40 and 70 wt.% In alloys.

The SPAR 5 experiment sequence proceeded as follows: after hold-

ing the samples at 980 °C for 16 hours, the rocket was launched

(t = 0 seconds). At t = +68 second_, the rocket despin procedure
began. Low-gravity conditions (i0 -_ g) were achieved at t = +84

seconds. At t = +160 seconds cooldown of the samples was in-

itiated. The end of the low-gravity period was estimated to be

329 seconds after launch with (I) solidification of the 40 and 70

wt.% In alloys completed at approximately t = + 392 seconds and

(2) solidification of the 30 and 90 wt.% In alloys completed at

approximately t = + 352 seconds.

Reportedly, the thermocouple included in the capsule containing

the 40 and 70 wt.% alloys "...failed by fracturing at the base of

the cartridge during preparation for the flight." (i, p. IV-59)

Estimated cooling rates were i0.0 °C/sec for the 40 and 70 wt.%

In samples and 10.6 °C/sec for the 30 and 90 wt.% In samples.

"It should be noted.., that the cooling rates experienced during

SPAR [5] were somewhat lower than desired... ([approximately] I0

C/second vs. the goal of 14 C/second) .... [T]his factor has led

to the likelihood that the indium-rich phase was still liquid at

the end of the low-g (<i x 10-3g) period. Although this factor

is not expected to alter the general conclusions of the study, it

does introduce some uncertainty in the results. The absence of a

thermocouple internal to the melt adds further to the degree of

uncertainty in the results." (I, p. IV-62)

Post-flight examination of the flight samples included radiog-

raphy and optical microscopy studies. The results from the 40

and 70 wt.% In alloys were similar to those from the SPAR 2

experiment: the flight samples consisted of a macroscopically

sized Al-rich core surrounded by an In-rich alloy. Samples

processed on Earth consisted of a layered structure. Subtle dif-

ferences between the SPAR 2 and SPAR 5 samples were attributed to

the different cooling rates. The structure of the low-gravity

processed, 30 wt.% In alloy was very similar to the 40 wt.% In

flight alloy "...and thus provided little further understanding

of the phase separation process. The 90 weight percent alloy,

however, did provide some new insight into the mechanisms that

may be contributing to massive phase separation. Most notable
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among the observations made on the alloy is the presence of an

annular zone denuded of aluminum-rich spheres around the mas-

sively separated aluminum-rich core. This observation, coupled

with the fact that there is an increasing concentration of

aluminum-rich spheres close to the central core, has provided

evidence supporting the theory that the aluminum-rich spheres

have migrated from the outer regions of the alloy into the inte-

rior, presumably under the action of surface tension gradients."

(i, p. IV-9) These results, as well as those from the SPAR 2 ex-

periment, led to the following conclusions:

(i) Massive separation in the flight samples was not due to a

lack of homogeneity in the melt at the beginning of the cooling

period.

(2) It was likely that surface tension driven flows were active

and were significant in forming the observed structures in both

the SPAR 2 and SPAR 5 samples (see Reference (i) for further

details).

(3) It was highly probable that migration of Al-rich droplets in

the In-rich flight samples was due to thermocapillary migration.

This was evidenced by particle coalescence, a process which

reduces the probability of particle pushing by the solidification

front.

(4) No microstructural or macrostructural effects could be at-

tributed to the failure of the samples to solidify prior to the

end of the low-gravity period.

(5) "Ground-based experiments conducted on rapidly cooled

aluminum-indium alloys have shown the phase separation to be ex-

tremely sensitive to composition with regions near the critical

composition providing massively separated phases which nucleated

and grew in much less than a second." (i, p. IV-100) This in-

stability was attributed to the (i) high volume fraction of the

second phase and (2) close proximity of neighboring droplets.

(6) There was evidence that in the Al-rich region of the mis-

cibility gap, the In-rich phase nucleated at the crucible wall

during cooling. This nucleation was attributed to the wetting

properties of the materials. As the In-rich content increases,

the tendency for Al-rich droplets to nucleate at the crucible

wall increases.
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Immiscible Alloys, Metals, Binary Systems, Melt and

Solidification, Cooling Rate, Sample Homogeneity, Drops, Droplet

Agglomeration, Drop Coalescence, Drop Migration, Density Dif-

ference, Surface Tension, Surface Energy, Interfacial Energy,

Free Surface, Buoyancy-Driven Convection, Thermocapillary Convec-

tion, Surface Tension-Driven Convection, Marangoni Convection,

Marangoni Movement of Droplets, Capillary Flow, Diffusion, Inter-

diffusion, Diffusion Coefficient, Separation of Components,

Segregation, Phase Separation, Solutal Gradients, Surface Tension

Gradients, Solid/Liquid Interface, Liquid/Liquid Interface,

Quench Process, Sample Microstructure, Composition Distribution,

Precipitation, Nucleation, Nucleation Sites, Wetting, Wetting of

Container, Crucible Effects, Material Interaction with Contain-

ment Facility, Rocket Motion, Vehicle Re-Entry Forces/Vibration,

Hardware Malfunction, Incomplete Sample Processing, Superconduc-

tors

Number of Samples: four

Sample Materials: aluminum-indium alloy with 30, 40, 70 and 90
wt.% indium

(Al*In*)

Container Materials: alumina, A1203, crucibles contained in

stainless steel cartridge

(AI*O*)

Experiment/Material Applications:

See Gelles, SPAR 2

The 30 wt.% In alloy was employed in this experiment to determine

the effect of a smaller In concentration on the tendency toward

massive separation. The 90 wt.% In alloy was selected because

(i) the precipitating phase has a low concentration and (2) the

tendency of A1 droplets to precipitate at the crucible walls

(analogous to In precipitation in high-Al concentration alloys)

could be investigated.

References/Applicable Publications:

(i) Gelles, S. H. and Markworth, A. J.: SPAR V Experiment No. 74-

30 Agglomeration in Immiscible Liquids. In Space Processing Ap-

plication Rocket Project, SPAR V Final Report, August 1980, NASA

TM-78275, pp. IV-i - IV-105. (post-flight)
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(2) Gelles, S. H. and Markworth, A. J.: Low Gravity Experiments

on Liquid Phase Miscibility Gap (LPMG) Alloys-Materials Experi-

ment Assembly. In Proceedings of the 4th European Symposium on

Materials Sciences Under Microgravity, Madrid, Spain, April 5-8,

1983, ESA SP-191, June 1983, pp. 307-312. (SPAR and STS

experimentation)

(3) Agglomeration in Immiscible Liquids at Low Gravity. In

Descriptions of Space Processing Applications Rocket (SPAR) Ex-

periments, Edited by R. J. Naumann, NASA TM-78217, pp. 15-16,

January 1987. (post-flight)

(4) Input received from Principal Investigator A. J. Markworth,

June 1993.

Contact(s):

Dr. Stanley H. Gelles

S. H. Gelles Associates

2836 Fisher Road

Columbus, OH 43204

Dr. Alan J. Markworth

Engineering Mechanics Department
Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201-2693
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Principal Investigator(s): Gelles, S. H. (1)

Co-Investigator(s): Markworth, A. J. (2)

Affiliation(s): (1) S. H. Gelles Associates, Columbus, Ohio; (2)

Engineering Mechanics Department, Battelle Memorial Institute,

Columbus, Ohio

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Payload Bay, OSTA-2 Payload Pallet Platform,

Materials Experiment Assembly (MEA-A1)

Processing Facility: Gradient and isothermal versions of the SPAR

General Purpose Rocket Furnace (GPRF)

Builder of Processing Facility: Unknown

Experiment:

Liquid Phase Miscibility Gap: {i) Gradient Cooling Experiment and

(2) Isothermal Plunqer Experiment

This STS-O07 space shuttle experiment was the third in a series

of investigations designed by Gelles et al. to study the low-

gravity solidification behavior of immiscible liquids (see

Gelles, SPAR 2, SPAR 5).

<Note: A document published after the return of STS-007 reported

that, during the mission, three experiments were performed using

the GPRF: (i) the gradient solidification of an Al-In alloy, (2)

the isothermal solidification of a Te-TI alloy, and (3) the

isothermal solidification of an Al-In alloy. However, no discus-

sion of the objectives or results of the Te-TI experiment could

be located in published literature at this time. Therefore, only

the two Al-In experiments are summarized below.>

Two experiments were discussed in detail in the available

publications: (i) the gradient solidification of an AI-90 wt.%

In alloy with thermal gradient and (2) the isothermal solidifica-

tion of an AI-90 wt.% In alloy with a plunger system.

Experiment #i: Solidification of Al-In with Thermal Gradient

The specific objective of this experiment was to investigate (i)

droplet migration driven by surface tension gradients and (2)

particle pushing by a moving solidification interface.

Prior to the STS launch, plugs of the alloy components in elemen-

tal form were contained in an alumina crucible. The specimen was

equipped with two thermocouples, one near the top of the sample
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material and the other near the bottom. A copper chill block was

placed at the bottom of the alumina crucible for heat extraction.

This entire assembly was sealed in a stainless steel cartridge

which was evacuated and back filled with He (0.0173 MPa). The

cartridge was configured within the Spacelab General Purpose

Rocket Furnace (G-GPRF).

During the experiment, the sample was (i) heated to 974 °C, (2)

held at this temperature for 8.1 hours, and (3) cooled at a rate

of 0.28 °C/sec (with an average gradient of 8.1 °C/cm). It was

expected that this procedure would result in (I) a single phase

liquid which would undergo phase separation with L I droplets

precipitating in the LII host liquid upon cooling, and (2) migra-

tion of the droplets to the warmer regions (Marangoni driven

migration). A computer simulation of this process had predicted

this behavior (see Reference (4)).

Post-flight, the STS-007 sample was compared to (I) samples

processed on Earth, using the nearly the same thermal conditions

and (2) the AI-90 wt.% In sample processed during the SPAR 5

sounding rocket experiment. It was noted that comparison was

complicated because (i) the SPAR 5 sample was subjected to a

cooling rate through the miscibility gap approximately i00 times

faster than the isothermal samples from the STS-007 experiment

and (2) the SPAR 5 samples did not completely fill the crucible
and a free surface resulted while the material was molten.

Optical and electron microscopic methods were used to evaluate

the STS gradient sample. It was reported that, contrary to ex-

pectations, the L I droplets "...appeared to be concentrating and
coalescing mainly at the cooler end of the sample .... In con-

trast, the dendrites which form below the monotectic temperature

were found to be uniformly distributed in the flight sample." (i,

p. 418) A shrinkage cavity was also located in the middle of the

sample as well as an expected cavity at the hot end. Several

possible explanations of the L I droplet behavior were reported

(see Reference (i) for a complete discussion). The most likely

reasons for this behavior were reported to be (i) the non-uniform

temperature gradient, (2) an incorrectly assumed behavior of the

interfacial energy between L I and LII, and (3) the solutocapil-

lary effects.

Experiment #2: Solidification of Al-In withla Plunger System

(Isothermal Experiment)

The specific objective of this experiment was to (i) determine if

during phase separation, surface tension-driven convection cur-

rents (which originate at a free surface) contribute to droplet

coalescence and (2) determine if the Liquid 1 (LI) droplets which
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form during the phase separation process migrate due to a thermal
gradient.

Prior to the STS launch, plugs of the alloy components in elemen-
tal form were contained in an alumina crucible. A close-fitting
alumina plunger was placed in the top part of the crucible. The
plunger contact with the sample material was maintained with a
quartz spring in a stainless steel retainer. The purpose of the
plunger was to avoid the presence of a liquid free surface (which
would result in surface tension-driven fluid flow). A ther-
mocouple was included at the bottom of the crucible. This entire
arrangement was sealed in a stainless steel cartridge which was
evacuated and back-filled with a partial pressure of He designed
to reach 0.i MPa at the intended hold temperature 970 °C. Two of
these cartridges (which were duplicates, designated as P-10 and
P-2-10) were configured in the isothermal version of the GPRF.

Post-flight examination of the isothermal samples and subsequent
comparison of the samples to ground-based-produced samples and
the AI-90 wt.% In SPAR 5 sample were similar to the post-flight
examination of the STS-007 gradient sample. "It should be noted
that in the case of Cartridge P-10, molten metal attack of the

thermocouple has occurred causing some errors in the temperature

readings." (i, p. 420) The actual temperature readings recorded

were between 984 °C and 916 °C. "The actual temperatures are

suspected to be higher than the indicated temperatures .... " (i,

p. 420)

It was reported that both flight samples contained few relatively

large L I droplets with many smaller ones distributed through the

In-rich matrix. These smaller droplets were adjacent to, but

generally not touching, the crucible wall. "The L I drops in

these samples appear to be somewhat more finely dispersed than in

the free surface SPAR [5] sample .... " (i, p. 420) This result
led "...to the tentative conclusion that the surface tension

driven convection currents originating from a free surface[,]...

to a small extent[,] contribute to the coalescence of the L I
drops. It is clear however that another mechanism must be

responsible for most of the observed coalescence. The one most

suspected is droplet migration arising from gradients in surface

tension." (I, p. 421) The ground-processed sample consisted of

an Al-rich layer above an In-rich layer. The dendritic structure

in the isothermal flight samples was similar to the gradient

sample. However, in the ground-processed isothermal sample, the

dendrites were driven by buoyancy forces to the top of the In-

rich layer.
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Immiscible Alloys, Metals, Metallic Matrix, Binary Sys-

tems, Melt and Solidification, Directional Solidification, Cool-

ing Rate, Sample Homogeneity, Drops, Drop Coalescence, Drop

Migration, Thermomigration, Marangoni Movement of Droplets,

Droplet Dispersion, Density Difference, Surface Tension, Surface

Energy, Interfacial Energy, Buoyancy-Driven Convection, Buoyancy

Forces, Free Surface, Free Surface Elimination, Piston System,

Thermocapillary Convection, Surface Tension-Driven Convection,

Marangoni Convection, Thermosolutal Convection, Capillary Flow,

Separation of Components, Segregation, Phase Separation, Solutal

Gradients, Surface Tension Gradients, Thermal Gradient, Isother-

mal Processing, Thermal Soak, Solid/Liquid Interface,

Liquid/Liquid Interface, Solidification Front Physics, Interface

Physics, Sample Microstructure, Composition Distribution,

Precipitation of Second Phase, Dendrites, Cavity, Sample

Shrinkage, Superconductors, Hardware Malfunction, Thermal En-

vironment More Extreme Than Predicted

Number of Samples: three

Sample Materials: aluminum-indium alloys, AI-90 wt.% In; a

tellurium-thallium alloy

(Al*In*, Te*TI*)

Container Materials: Alumina (A1203) crucible within a stainless

steel cartridge

(AI*O*)

Experiment/Material Applications:

See Gelles, SPAR 5.

References/Applicable Publications:

(i) Gelles, S. H. and Markworth, A. J.: Space Shuttle Experi-

ments on Al-In Liquid Phase Miscibility Gap (LPMG) Alloys. In

ESA 5th European Symposium on Material Sciences Under

Microgravity, Results of Spacelab 1, Schloss Elmau, November 5-7,

1984, ESA SP-222, pp. 417-422. (post-flight)

(2) Gelles, S. H. and Markworth, A. J.: Low-Gravity Experiments

On Liquid Phase Miscibility Gap (LPMG) Alloys: Materials Experi-

ments Assembly (MEA). In ESA 4th European Symposium on Material

Sciences Under Microgravity, Madrid, Spain, April 5-8, 1983, ESA

SP-191, pp. 307-312. (preflight)

17-46



(3) Harris, E. G.: Materials Experiment Assembly (MEA) Accelera-

tion Summary, STS-7, Marshall Space Flight Center, JA62-004, July

1984.

(4) Gelles, S. H.: Liquid Phase Miscibility Gap Alloys - MEA A1

Experiments. Final post flight report to NASA-MSFC on Contract
NAS8-32952. <Note: The date this report was published is un-

clear.>

(5) General Purpose Rocket Furnace. In Microgravity Science and

Applications Experiment Apparatus and Facilities document

developed by the Commercialization of Materials Processing in

Space Group, Program Development Directorate, Marshall Space

Flight Center, pp. 3-4. (processing facility)

(6) Naumann, R. J.: Microgravity Science and Applications. In:

In Space 87, Japan Space Utilization Promotion Center (JSUP), pp.

23-24. (post-flight)

(7) Input received from Principal Investigator A. J. Markworth,

June 1993.

Contact(s):

Dr. Stanley H. Gelles

S. H. Gelles Associates

2836 Fisher Road

Columbus, OH 43204

Dr. Alan J. Markworth

Engineering Mechanics Department
Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201-2693
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Principal Investigator(s): Gelles, S. H. (1)

Co-Investigator(s): Unknown

Affiliation(s): (1) S. H. Gelles Associates, Columbus, Ohio

Experiment Origin: USA

Mission: STS Launch #22, STS-030 (STS 61-A, Spacelab DI:

Challenger)

Launch Date/Expt. Date: October 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Payload Bay Materials Experiment Assembly (MEA-

A2)

Processing Facility: Isothermal General Purpose Rocket Furnace

(I-GPRF)

Builder of Processing Facility: Unknown

Experiment:

Liquid Phase Miscibility Gap Materials

<Note: Publications which detailed the actual D1 experimental

setup or post-flight results of this investigation could not be

located at this time. The following summary was based on

References (i) and (4), which were published prior to the

Spacelab D1 mission.>

This Spacelab D1 experiment was the fourth in a series of inves-

tigations designed by Gelles et al. to study the low-gravity

solidification behavior of immiscible liquids (see Gelles, SPAR

2, SPAR 5, STS-007). The specific objective of this experiment

was to examine the space-produced microstructure of an Al-In al-

loy and determine the effect of (i) the minimization of gravity,

(2) the minimization of surface tension-driven convection cur-

rents (using a crucible system with a plunger), and (3) the

reduction of the interaction between droplets and crucible wall
material.

During the Spacelab D1 mission, the General Purpose Rocket Fur-

nace was to be used to process an AI-40 wt.% In alloy. The alloy

was to be contained in a crucible which also held a plunger to

prevent the formation of a free surface (gas/liquid interface)

during sample processing. It was anticipated that the crucible

would be heated to 970 (+/- i0) °C at a rate which would avoid

thermal shock to the ceramic components (>15 minutes). The

cartridge was to be held at this tem_eratur_ for 12 hours and
then cooled at a rate of 6.0 (+/- 0.5) C to below 600 °C. Cool-

ing from 600 °C to below i00 °C was expected to occur at a rate

near 6 °C/min.

No post-flight discussion of the actual experimental procedure or

results from this experiment could be located at this time.
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Immiscible Alloys, Metals, Binary Systems, Melt and

Solidification, Homogeneity, Drops, Drop Coalescence, Drop Migra-

tion, Thermomigration, Marangoni Movement of Droplets, Density

Difference, Surface Tension, Surface Energy, Interfacial Energy,

Buoyancy-Driven Convection, Free Surface, Free Surface Elimina-

tion, Thermocapillary Convection, Surface Tension-Driven Convec-

tion, Separation of Components, Segregation, Phase Separation,

Solutal Gradients, Surface Tension Gradients, Thermal Soak,

Solid/Liquid Interface, Liquid/Liquid Interface, Sample

Microstructure, Composition Distribution, Precipitation of Second

Phase, Crucible Effects, Material Interaction with Containment

Facility

Number of Samples: one

Sample Materials: <Note: The composition of the actual flight

sample was not reported in the available documents. A document

published prior to the flight indicated that the sample was to be
AI-40 wt.% In>

(Al*In*)
Container Materials: unknown

Experiment/Material Applications:

See Gelles, SPAR 5.

References/Applicable Publications:

(i) Gelles, S. H.: Liquid Phase Miscibility Gap Materials. In

Scientific Goals of the German Spacelab Mission DI, German Pub-

lication, WPF, p. 143. (preflight)

(2) Materials Processing Experiments in Space: MEA-A2 Payload.

Brochure available from Application Payload Projects NASA/MSFC,

Huntsville, Alabama. (MEA; preflight)

(3) General Purpose Rocket Furnace. In Microgravity Science and

Applications Experiment Apparatus and Facilities, document

developed by the Commercialization of Materials Processing in

Space Group, Program Development Directorate, Marshall Space

Flight Center, pp. 4-5. (processing facility)

(4) Naumann, R. J.: Microgravity Science and Applications. In:

In Space 87, Japan Space Utilization Promotion Center (JSUP), pp.

23-24. (appears to be discussing results of this flight)
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(5) Input received from A. J. Markworth, June 1993.

Contact(s):

Dr. Stanley H. Gelles
S. H. Gelles Associates

2836 Fisher Road

Columbus, OH 43204

Dr. Alan J. Markworth

Engineering Mechanics Department
Battelle Memorial Institute

505 King Avenue

Columbus, OH 43201-2693
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Principal Investigator(s): L6hberg, K. (1), Dietl, V. (2),

Ahlborn, H. (3)

Co-Investigator(s): Unknown

Affiliation(s): (1,2) During SPAR 2: Berlin Technische, Federal

Republic of Germany, (1) Currently: Deceased, (2) Currently:

Unknown; (3) Universitat Hamburg, Germany

Experiment Origin: Federal Republic of Germany
Mission: SPAR 2

Launch Date/Expt. Date: May 1976

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: FWD (Forward) General Purpose Rocket Furnace

(silicon carbide tube furnace)
Builder of Processing Facility: National Aeronautics and Space

Administration (NASA), Marshall Space Flight Center, Huntsville,

Alabama

Experiment:
Solidification Behavior of Al-In Immiscible Alloys Under Zero-

Gravity Conditions (74-62) (SOLUOG)

"Melts of an alloy system with [a] miscibility gap in the liquid

state, when homogeneous at high temperatures, should exhibit dif-

ferent separation mechanisms when entering the miscibility gap

during the cooling process, depending on whether separation
starts within or outside the range of spinodal decomposition.

Even alloys with a noncritical composition are capable of

spinodal separation, if the binodal temperature is undercooled to

the spinodal temperature. The spinodal separation is charac-

terized by spontaneous decomposition of the melt without any

nucleation leading to extremely fine and uniform dispersion of

the two phases. Under zero-g conditions and at high cooling

rates, there should be neither a segregation of the two phases

nor an essential coalescence of the droplets of the two

melts .... " (i, p. VIII-3)

This SPAR 2 experiment was the first in a series of investiga-

tions designed by L6hberg and/or Ahlborn et al. to study the

solidification of metallic alloys under low-gravity conditions.

The specific objective of the experiment was to investigate the

decomposition and crystallization behavior of two immiscible al-

loys which are characterized by a miscibility gap in the liquid

state: (i) 60 at.% AI-40 at.% In (sample 60/40) and (2) 89 at.%

AI-II at.% In (sample 89/11). (The chosen alloys had a critical

temperature of approximately 830 °C.)
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The experiment was "...expected to provide an answer to the ques-

tion whether alloys of different compositions exhibit different

structures depending on the separation mechanism." (I, p. VIII-3)

It was anticipated that the 60/40 sample would decompose

spinodally and that the 89/11 sample would decompose by nuclea-

tion. The final structures of the samples were expected to ex-

hibit a uniform dispersion of the In-rich and Al-rich phases, al-

though each sample was expected to contain a different size and

arrangement of second phases.

Prior to the flight experiment, several ground-based studies were

performed to (I) determine if the available phase diagram was

sufficiently accurate concerning critical composition and tem-

perature, (2) determine the required holding time above the

critical temperature to assure complete homogenization of the

melts, (3) select the crucible material and crucible sealing

material suitable for these alloys, and (4) select metallographic

examination methods which avoid unnecessary material loss. The

ground-based samples were processed using various cooling rates

for comparison to the flight specimens. (Further details of

these preflight experiments are included in Reference (I).)

The two immiscible samples for the flight experiment were com-

posed of pure A1 and In plates (the In configured on top of the

AI). Each sample was contained in a sintered alumina crucible
which was evacuated and sealed with a cementing material. Both

crucibles were placed in a high-temperature resistant ferritic

steel (Thermax 4742) cartridge which was evacuated and welded

air-tight. The cartridge was inserted into the SPAR General Pur-

pose Rocket Furnace (GPRF).

Just prior to the rocket launch, the recorded temperature (based

on thermocouples located on the outside of the cartride) was 980

°C. After launch, the temperature rapidly fell to 950 °C and

remained at that point for about 120 seconds. Cooling was in-

itiated at 150 seconds after launch by introducing helium into

the experiment chamber. At about 300 seconds after launch, the

temperature was 150 °C. Cooling rates decreased from 17.5 K/sec

to 1 K/sec as the sample temperatures decreased from 950 °C to

150 o

Comparison of this temperature data to that from another experi-

ment, which was also performed in the GPRF (see Gelles, SPAR 2),
led to the conclusion that the monotectic reaction occurred

isothermally.

Post-flight examination of the two Al-In samples revealed that

the expected phase arrangement was not achieved. However, the
stratification observed in the ground-processed samples also was

not seen. "In the [low-gravity processed] alloy 60/40, an AI-
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rich globule was observed, whose interior was filled with AI-
containing In and which was enveloped by Al-containing In. The
A1 globule has an interconnection point. In the second sample
[sample 89/11] the In-rich component accumlated in the upper part
of the melt regulus, but not in a stratified manner. Here too,
is a narrow In-rich zone at the whole regulus surface. The A1
crystallizing at the monotectic temperature (636 °C) has an equi-
axial form and the A1 crystallizing below this temperature has a
fine dendritic form. [See Reference (i) for micrographs of the
sample.]

"In the [low-gravity processed] Al-rich sample 89/11, a sphere
could not be formed for geometrical reasons, but a tendency
towards sphere formation is obvious. Consequently, the

solidification occurred essentially towards the heat flow

directed to the bottom, with the In-rich melt being displaced

towards the top. In the sample 60/40, by contrast, the following

process should have taken place. The spherical Al-rich melt was

surrounded by an In-rich melt when the crystallization started at

the monotectic temperature and advanced radially to the center

against the heat flow going regularly into all directions. In

this process, the larger amount of the separated In-rich melt was

displaced into the interior of the sphere and was subjected

(because of the strong volume contraction during solidification

of the aluminum) to a rising pressure which finally led to the A1

sphere breaking through a weak point. The resulting current

through the 'channel' can still be traced in the solidified

sample by 'hollow vortices' existing only at this point.

"The fact that the melt reguli are surrounded by In-rich melt may

be understood from the different interface and surface energies

of the In-rich and Al-rich melts. Accumulation of In in the

sample surfaces as well as in the interface between melt and

aluminum oxide crucible may be the result of the lower surface

and interface energies of the In-rich melt." (i, p. VIII-42)

It was reported that important questions, still remained which

could be answered with both short-term and long-term, low-gravity

experiments:

(i) Does a critical growth rate exist below which displacement of

the second phase (In-rich melt) by the crystallizing phase (AI-

rich melt) does not occur? (Reportedly, experiments in which the

crystallization rate was varied would help answer this question.)

(2) What are the effects of surface and interracial energies on

the separation and crystallization of phases? (Reportedly, ex-

periments in which the crucible material and/or the sample

length/diameter ratios were varied would help answer this ques-

tion.)

17-53



Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Metals, Metallic Matrix, Binary Systems, Two-Phase System,

Monotectic Compositions, Isothermal Processing, Melt and

Solidification, Sample Homogeneity, Drops, Sphericity, Drop

Coalescence, Droplet Dispersion, Density Difference, Surface Ten-

sion, Surface Energy, Interfacial Energy, Separation of Com-

ponents, Segregation, Phase Separation, Spinodal Decomposition,

Solid/Liquid Interface, Liquid/Liquid Interface, Undercooling,

Growth Rate, Cooling Rate, Sample Microstructure, Composition

Distribution, Nucleation, Dendritic Structure, Quench Process,

Aspect Ratio, Crucible Effects, Material Interaction with Con-

tainment Facility

NUmber of Samples: two

Sample Materials: (i) AI-40 at.% In and (2) AI-II at.% In

(Al*In*)

Container Materials: alumina, A1203, contained in a high-

temperature resistant, ferritic steel Thermax 4742 cartridge

(AI*O*)

Experiment/Materlal Applications:

The Al-In alloys were selected for this experiment because (i)

there is a large difference in density between the Al-rich and

In-rich melts and (2) the critical temperature of the miscibility

gap (approximately 830 °C) was low enough to allow homogenization

of the melts using the available sounding rocket hardware.

References/Applicable Publications:

(i) Ahlborn, H.: Segregation and Solidification of Liquid

Aluminum-Indium Alloys Under Zero Gravity Conditions. In Space

Applications Rocket Project, SPAR 2- Final Report, NASA TM-78125,

pp. VIIII-VIII44, November 1977. (post-flight)

(2) Toth, S. and Frayman, M.: Measurement of Accleration Forces

Experienced by Space Processing Applications. Goddard Space

Flight Center, Contract No. NAS5-23438, Mod. 23, ORI, Inc., Tech-

nical Report 1308, March 1978. (acceleration measurements, SPAR

1-4)

(3) Ahlborn, H. and Lohberg, K.: Aluminum Indium Experiment

SOLUOG--A Sounding Rocket Experiment on Immiscible Alloys. 17th

Aerospace Sciences Meeting, New Orleans, Louisiana, January 15-

17, 1979, 4 pp.
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Contact(s):

Prof. Dr. H. Ahlborn

Universitat Hamburg

Von-Mell Park 8

D-2000 Hamburg 13

Germany
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Principal Investigator(s): Hodes, E. (1), Steeg, M. (2)

Co-lnvestigator(s): None

Affiliation(s): (1) During TEXUS 1: Glyco-Metall-Werke, Wies-

baden, Federal Republic of Germany, Currently: Retired; (2)

Glyco-Metall-Werke, Wiesbaden, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 1

Launch Date/Expt. Date: December 1977

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-1

(Isothermal four-chamber furnace)

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Germany

Experiment:

Al-Pb Dispersion

Aluminum alloys containing lead dispersions are expected to

possess excellent properties for bearing applications. Because

of large density differences of the alloy constituents, however,

homogeneous AI-Pb alloys cannot be obtained on Earth by conven-

tional casting techniques. It was expected that in a reduced

gravity environment, (i) gravity-driven sedimentation of the Pb

in the A1 melt would be reduced, (2) a fine liquid-liquid disper-

sion would be obtained, and (3) the fine dispersion could be con-

served in the solid by rapid cooling.

This TEXUS 1 experiment was designed to study the low-gravity

solidification of an immiscible alloy. The specific objective of

the experiment was to produce an AI-Pb alloy with a homogeneous

dispersion of Pb in an A1 matrix.

During the mission one chamber of the isothermal four-chamber

furnace module was used to melt and resolidify a compact powder

sample. The A1 sample contained 8 wt.% Pb, 3.5 wt.% Si, 1.5 wt.%

Cu, and 1 wt.% Sn. While under low-gravity conditions, the tem-

perature of the material was (I) raised above the miscibility gap

(Ii00 °C) and (2) then lowered below i000 °C (to form the

required fine, liquid-liquid dispersion). The material was

rapidly cooled before the low-gravity period ended.

F

Post-flight analysis of the sample revealed the formation of

pores which was attributed to insufficient densification and/or

degassing during sample preparation. Also present were oxide

layers which surrounded the lead particles. (These layers were

also present in a sample processed terrestrially.) Reportedly,

the oxide layers prevented the formation of a homogeneous melt.
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Thus, the low-gravity and l-g samples had similar features

(although the size of the Pb particles in the flight sample was

smaller than in the l-g material).

No further information concerning this experiment could be lo-

cated at this time.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Metals, Metallic Matrix, Powder Metallurgy, Melt and

Solidification, Isothermal Processing, Cooling Rate, Casting,

Phase Separation, Homogeneous Dispersion, Droplet Dispersion,

Particle Dispersion, Liquid/Liquid Dispersions, Particle Size

Distribution, Density Difference, Separation of Components,

Sedimentation, Segregation, Solid/Liquid Interface, Liquid/Liquid

Interface, Bubble Formation, Bubble Removal, Sample Microstruc-

ture, Pores, Oxide Layer, Thin Films, Quench Process

Number of Samples: one

Sample Materials: single aluminum sample comprised of 8 wt.% Pb,

3.5 wt.% Si, 1.5 wt.% Cu, 1 wt.% Sn

(Al*Pb*Si*Cu*Sn*)

Container Materials: Si3N 4 (crucible sealed at normal atmosphere)

(Si*N*)

Experiment/Material Applications:

See Experiment section above.

References/Applicable Publications:

(I) Hodes, E. and Steeg, M.: Production of an Aluminum Lead Alloy

in Microgravity. Z. Flugwiss. Weltraumforsch.2 (1978), Heft 5,

pp. 337-341. (in German; English abstract)

(2) Final Report, TEXUS-I, DFVLR-BPT, 1978.

(3) Input received from Experiment Investigator, August 1988 and

July 1993.
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(4) AI-Pb Bearing Alloy. In Summary Review of Sounding Rocket

Experiments in Fluid Science and Materials Sciences, TEXUS 1 to

20, MASER 1 and 2, ESA SP-I132, February 1991, pp. 246-247.
(post-flight)

Contact(s):

M. Steeg

Glyco-Metall-Werke

Glyco B. V. & Co. KG

Postfach 130335

65091 Wiesbaden

Germany
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Principal Investigator(s): Walter, H. U. (1), Ziegler, G. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1,2) During TEXUS 1: DFVLR-WB Institut fur

Werkstoff- Forschung, Cologne, Federal Republic of Germany; (1)

Currently: European Space Agency (ESA) Headquarters, Paris,

France; (2) Currently: Unknown

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 1

Launch Date/Expt Date: December 1977

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-1: isothermal

furnace. (One of four available chambers within the furnace was

employed for this experiment.)

Builder of Processing Facility: ERNO, Raumfahrttechnik GmbH,

Bremen, Germany

Experiment:

Stability of Compound Mixtures/Powder Metallurqy (Composite

Materials I: Liquid-Liquid-Gas Systems)

<Note: Walter performed two experiments on TEXUS 1 which involved

the TEM 01-i experiment module. Details of the other experiment

can be found in Chapter 5: "Composites with Solid Particles.">

This TEXUS 1 experiment was the first in a series of investiga-

tions designed by Walter et al. to explore the low-gravity

stability of multicomponent liquid-liquid systems during melting,

thermal soak, and solidification. The specific objective of the

experiment was to examine the mechanisms (and their relative

importance) which drive component separation. These mechanisms

not only include (i) sedimentation and buoyancy (gravity

effects), but also (2) volume changes, (3) interparticle forces,

(4) the motion of droplets in a temperature gradient, (5) inter-

action of liquid and gaseous inclusions with an advancing

solidification front, (6) wetting, (7) liquid spreading, and (8)

coalescence. Low-gravity processing permitted closer examination

of mechanisms often masked by overwhelming gravity effects.

A composite-powder model system representing a liquid-liquid-gas
mixture was chosen for the TEXUS 1 flight. The sample, iden-

tified as sample I(5), consisted of Ag particles (32 to 50 micron

grain size) and irregularly shaped Na-glass particles. The

sample had an Ag/Na-glass volume ratio of 4:1 and was (i)

compressed to a residual pore volume of 10% and (2) annealed (on

Earth) in hydrogen at 500 °C and 1 atmosphere for 30 minutes.

(Silver (Ag) was chosen as the matrix material and the glass par-

ticles were statistically distributed.)
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The sample, which was placed in a molybdenum crucible (TZM

alloy), was housed with four other samples in a single stainless

steel cartridge. <Note: These four other samples consisted of a

solid-liquid-gas system and are detailed in Chapter 5,

"Composites with Solid Particles" (see Walter, TEXUS i).>

The samples were processed in one of the four chambers of the

TEM-01 isothermal furnace. Reportedly, the cartridge was

preheated to 850 °C prior to lift-off and held at this tempera-

ture during launch. Once microgravity conditions had been

achieved (<10 -4 g), the samples were heated to ii00 °C. After 30

seconds at this temperature, the samples were cooled such that
they were below 600 vC by rocket re-entry.

Analysis of a similar Ag/Na-glass sample, remelted under l-g con-

ditions, illustrated a significant degree of separation because

of the large density differences between the compound elements.

It was reported that there was also an unexpected amount of

separation in the flight Ag/Na-glass sample. Sample I(5) con-

sisted of "...a large drop of Ag without any inclusion or pores

and a single pore.., surrounded by a layer of glass." (2, p. 32)

Sample I(5) had a low surface free energy configuration. This

result was highly significant. It indicated that the driving

forces for separation of such components in the liquid state were

not restricted to buoyancy and sedimentation. It was also ap-

parent that rearrangement of the components occurred very rapidly
since melting, soak, and resolidification occurred within the 5-

minute low-gravity period.

Reportedly, the interfacial energy between Ag-melt and glass was

calculated to be about 900 mN/M and the contact angle was about

90 ° at i000 °C (Ag melt temp. = 960.8 °C). However, the contact

angle between the _lass and molybdenum (crucible wall) was less

than or equal to 0 v. Therefore, the most stable configuration

was a layer of glass surrounding a silver core. In order to

determine which mechanism was responsible for this configuration

(motion of droplets due to a thermal gradient or chain formation)

two samples having a larger percentage of glass were processed on

TEXUS 2 (see Walter, TEXUS 2, samples II(4) and II(5)).

It was later reported that "These results indicated that separa-

tion can take place under microgravity conditions as well and can

be driven by surface tension gradients. T_e preparation of

heterogeneous alloys or composites from powder mixtures is,

therefore, not possible with mixtures having non-wetting com-

ponents and pore volume or with degassing materials." (4, p. 236)
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Immiscible Fluids, Melt and Solidification,Isothermal

Processing, Annealing, Powder Metallurgy, Metallic Matrix,

Glasses, Multiphase Media, Model Materials, Binary Systems, Phase

Separation, Separation of Components, Stability of Dispersions,

Liquid/Liquid Dispersions, Solid/Liquid/Gas Dispersion, Density

Difference, Drops, Drop Migration, Marangoni Movement of

Droplets, Thermomigration, Sedimentation, Buoyancy Effects, Wet-

ting, Wetting of Container, Contact Angle, Surface Energy, Inter-

facial Energy, Surface Tension Gradients, Liquid Spreading, Drop

Coalescence, Pores, Inclusions, Thermal Soak, Solidification

Front Physics, Inclusion and/or Rejection of Particles,

Liquid/Liquid Interface, Liquid/Gas Interface, Solid/Liquid In-

terface, Volume Change, Liquid Phase Sintering

Number of Samples: one

Sample Materials: Ag particles (32 to 50 micron grain size) and

irregularly shaped Na-glass particles

(Ag*Na*)
Container Materials: Molybdenum crucible (TZM alloy) with outer

stainless steel envelope

(Mo*)

Experiment/Material Applications:

Earlier low-gravity experiments indicated that sedimentation and

buoyancy were not the only forces separating components of com-

posite materials (see, for example, Kawada, Skylab SL-3 and SL-4

(Chapter 5); Uhlman, SPAR missions (Chapter 5)). Other

mechanisms (as detailed in the above experiment summary) could

contribute to separation. It was necessary, therefore, to deter-

mine the extent and relevance of each of these forces.

The materials used in both Walter's TEXUS 1 experiments (one

liquid-liquid-gas sample (Ag-Na glass) and four solid-liquid-gas

samples) were chosen for many reasons: (i) the melt temperatures
of each were below that of the available maximum furnace tempera-

ture, (2) large density differences between materials could il-

lustrate separation due to residual acceleration components, and

(3) wetting and non-wetting powder combinations would indicate

separation due to this material characteristic. In addition,

(i) no chemical reaction or solubility of components would occur,

(2) plasticity of matrix material (Ag) allowed density control,

(3) control of surface contamination and oxidation was possible,

(4) the vapor pressure at maximum temperature would be low, and

(5) the powders were available in the required form (particle
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shape, etc.).

Referenaes/Appllcable Publications:

(I) Walter, H. U.: Stability of Multicomponent Mixtures Under

Microgravity Conditions. In Proceedings of the 3rd European Sym-

posium on Material Sciences in Space, Grenoble, April 24-27,

1979, ESA SP-142, p. 245. (post-flight)

(2) Walter, H. U. and Ziegler, G.: Stability of Multicomponent

Mixtures. In Shuttle/Spacelab Utilization Final Report, Project

TEXUS, 1978, Technological Experiments in Micro-gravity, pp. 27-

47. (TEXUS 1 and 2; this paper is the same as the Grenoble paper

above)

(3) Walter, H. U. and Ziegler, G.: Rearrangement and Separation
Processes During Liquid Phase Sintering Under Microgravity Condi-

tions. In Proceedings of the European Sounding-Rocket, Balloon

and Related Research with Emphasis on Experiments at High

Latitudes, Ajaccio, Corsica, April 24-29, 1978, ESA SP-135, pp.

345-352. (post-flight)

(4) Composite Materials I. In Summary Review of Sounding Rocket

Experiments in Fluid Science and Materials Sciences, TEXUS 1 to

20, MASER 1 and 2, ESA SP-I132, February 1991, pp. 236-237.

(post-flight)

Contact(s):

Dr. Hans Walter

ESA-HQ

8-10, rue Mario-Nikis

F-75738 Paris Cedex 15

France
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Principal Investlgator(s): Walter, H. U. (I), Ziegler, G. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1,2) During TEXUS 2: DFVLR-WB Institut f_r

Werkstoff-Forschung, Cologne, Federal Republic of Germany, (1)

Currently: European Space Agency (ESA) Headquarters, Paris,

France, (2) Currently: Unknown

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 2

Launch Date/Expt Date: November 1978

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-1

Builder of Processing Facility: ERNO, Raumfahrttechnik GmbH,

Bremen, Germany

Experiment:

Stability of Compound Mixtures/Powder Metallurqy (Composite

Materials II: Liquid-Liquid Systems)

<Note: Walter performed two experiments on TEXUS 2 which involved

the TEXUS TEM 01-i experiment module. Details of the other ex-

periment can be found in Chapter 5 "Composites with Solid Par-

ticles."> This TEXUS 2 experiment was the second in a series of

investigations designed by Walter et al. to explore the low-

gravity stability of multicomponent liquid-liquid systems during

melting, thermal soak, and solidification (see Walter, TEXUS i).

The specific objective of the experiment was to examine the

mechanisms (and their relative importance) which drive component

separation.

Two-component systems (representative of liquid-liquid systems)

were examined. Reportedly, because the chosen samples had no

pores or free surfaces "...[(i)] Marangoni-flow generated at

liquid-gas interfaces, [(2)] flow induced by volume expansion of

gaseous inclusions, [(3)] melt bridge formation and resulting

forces on particles, and [(4)] especially capillarity effects and

coalescence..." (2, p. 36) should not be significant when resolv-

ing separation mechanisms. (All of these factors influenced the

results from the TEXUS 1 experiment (see Walter, TEXUS i).)

Two powder samples (prepared to the theoretical density) were

selected for study. The first sample (designated as Sample

II(4)), consisted of Ag (particle diameter of i00 to 200 microns)

and Na-glass (particle diameter of 100-160 microns). The sample

had an Ag/Na-glass volume ratio of 4:1 (80 vol.% Ag-20 vol.%

glass) and theta ranged between 70 ° and 90 ° . The second sample

(designated as Sample II(5)), consisted of 35 vol.% Ag - 65 vol.%

Na-glass (particle diameters same as Sample II(4)). Theta ranged

17-63



between 70 ° and 90 ° .

Pre-flight preparation of the TEXUS 2 samples involved certain

de-gassing and compaction procedures which the TEXUS 1 samples

did not undergo (see Reference (I) for details).

The sample materials were processed under low-gravity conditions

in the TEM 01 isothermal furnace. The melt and solidification

sequence was similar to the TEXUS I sequence. The procedure was

slightly altered such that the cartridge was pre-heated to 600 °C

prior to TEXUS 2 lift-off (it was heated to 850 °C for TEXUS i).

Post-flight examination of the low-gravity processed samples led

to the following results:

Postflight analysis of samples II(4) and II(5) -...indicate[d]

clearly that movement of droplets according to... [Stoke's

Law]... [was] not predominant." (2, p. 36) Constituents in

sample II(5) (65 vol.% glass) separated and contained a large

drop of Ag surrounded by a layer of glass (see Walter, TEXUS i,

sample I(5) for comparison). There were no inclusions within the

drop. Sample II(4) (20 vol.% glass) was the same as sample II(5)

except there were glass inclusions within the Ag drop. This
result ,,...indicates that particle chains were not sufficiently

long to link up each particle with the energetically favorable

periphery of the sample (crucible wall). Thus, the preparation

of dispersion alloys via spinoidal[sic] decomposition may not be

possible, since 3-dimensional network formation is to be expected

in case of spontaneous separation of two components having ap-

proximately equal volume fraction." (2, p. 36)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Immiscible Fluids, Melt and Solidification,Isothermal

Processing, Powder Metallurgy, Metallic Matrix, Glasses, Two-

Phase System, Multiphase Media, Model Materials, Binary Systems,

Phase Separation, Separation of Components, Stability of Disper-

sions, Liquid/Liquid Dispersions, Density Difference, Drops, Drop

Migration, Thermomigration, Sedimentation, Stokes Sedimentation,

Spinodal Decomposition, Buoyancy Effects, Free Surface Elimina-

tion, Wetting, Contact Angle, Inclusions, Thermal Soak,

Solidification Front Physics, Liquid/Liquid Interface,

Solid/Liquid Interface, Bubble Removal, Orucible Effects,

Material Interaction with Containment Facility

Number of Samples: two
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Sample Materials: Sample II(4)) consisted of Ag (particle

diameter of 100 to 200 microns) and Na-glass (particle diameter

of 100-160 microns). The sample had an Ag/Na-glass volume ratio

of 4:1 (80 vol.% Ag-20 vol.% glass) and theta ranged between 70 °

and 90 ° . Sample II(5) consisted of 35 vol.% Ag - 65 vol.% Na-

glass (particle diameters same as Sample II(4)). Theta ranged
between 70 ° and 90 ° .

(Ag*Na*)
Container Materials: molybdenum crucible (TZM alloy) in stainless

steel envelope

(Mo*)

Experiment/Material Applications:

See Walter TEXUS i: Stability of Compound Mixtures/Powder Metal-

lurgy (Composite Materials II: Liquid-Liquid-Gas Systems (this

chapter)).

References/Applicable Publications:

(I) Walter, H. U.: Stability of Multicomponent Mixtures Under

Microgravity Conditions. In Proceedings of the 3rd European Sym-

posium on Material Sciences in Space, Grenoble, April 24-27,

1979, ESA SP-142, pp. 245-253. (post-flight)

(2) Walter, H. U. and Ziegler, G.: Stability of Multicomponent

Mixtures. In Shuttle/Spacelab Utilization Final Report, Project

Texus, 1978, Technological Experiments in Micro-gravity, pp. 27-

47. (TEXUS 1 and 2) (This paper the same as the Grenoble paper

above.)

(3) Walter, H. U. and Ziegler, G.: Rearrangement and Separation

Processes During Liquid Phase Sintering Under Microgravity Condi-

tions. In Proceedings of the European Sounding-Rocket, Balloon

and Related Research, with Emphasis on Experiments at High

Latitudes, Ajaccio, Corsica, April 24-29, 1978, ESA SP-135, pp.

345-352. (post-flight)

(4) Composite Materials II. In Summary Review of Sounding Rocket

Experiments in Fluid Science and Materials Sciences, TEXUS 1 to

20, MASER 1 and 2, ESA SP-I132, February 1991, pp. 286-287.

(post-flight)

Contact(s):

Dr. Hans Walter

ESA-HQ

8-10, rue Mario-Nikis
F-75738 Paris Cedex 15

France
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Principal Investigator(s): Walter, H. U. (1), Ziegler, G. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1,2) During TEXUS 3: DFVLR-WB Institut f_r

Werkstoff-Forschung, Cologne, Federal Republic of Germany, (1)

Currently: European Space Agency (ESA) Headquarters, Paris,

France, (2) Currently: Unknown

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 3

Launch Date/Expt Date: April 1980

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-2 isothermal

furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Stability of Compound Mixtures

This TEXUS 3 experiment was the third in a series of investiga-

tions designed by Walter et al. to explore the low-gravity

stability of multicomponent liquid-liquid systems during melting,

thermal soak, and solidification (see Walter, TEXUS I, TEXUS 2).

During the Walter's earlier TEXUS 1 study, one of the five

samples processed was Ag-Na glass; during his TEXUS 2 study, two

of the five were Ag-Na glass. Apparently, during this mission

all eight samples processed were Ag-Na glass. The Na glass con-

tent of the samples ranged from 2 vol.% to 17 vol.% (see the

Sample Materials section below).

The samples were processed in an isothermal furnace within the

TEXUS Experiment Module TEM 01-2 (previously described under Wal-

ter, TEXUS i). <Note: No other processing parameters (e.g.,

temperatures) were detailed in the available publications.>

It was reported that during the TEXUS 3 flight, the experiment

did not achieve the desired gravity level because of a

"...residual spin of the rocket (i Hz) and centrifugal accelera-

tion of 0.19g resulting therefrom .... " (3, p. 9) Despite the un-

desired accelerations, sample analysis indicated that the lower

the amount of minority phase (Na-glass) in the material the

greater the stability of the dispersion. The 17% glass sample

exhibited complete separation; the 2% glass sample exhibited a

very stable dispersion.
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Additional results from the TEXUS 3 flight were combined with
those from other flight experiments by Walter (TEXUS i, TEXUS 2,
TEXUS 3, TEXUS 3b, TEXUS 5). The combined conclusions from these
experiments can be found under Walter, TEXUS 5 (this chapter).

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-
loys, Immiscible Fluids, Melt and Solidification, Isothermal
Processing, Thermal Soak, Powder Metallurgy, Multiphase Media,
Model Materials, Binary Systems, Metallic Matrix, Glasses, Phase
Separation, Separation of Components, Stability of Dispersions,
Liquid/Liquid Dispersions, Density Difference, Drops, Drop Migra-
tion, Thermomigration, Sedimentation, Buoyancy Effects,
Solidification Front Physics, Liquid/Liquid Interface,
Solid/Liquid Interface, Rocket Motion, Acceleration Effects,
Rocket Despin Failure

Number of Samples: eight

Sample Materials: silver particles/sodium glass particles (2, 4,

6, 8, ii, 13, 15, 17 vol.% Na-glass)

(Ag*Na*)
Container Materials: unknown

Experiment/Material Applications:

See Walter, TEXUS i.

References/Applicable Publications:

(I) Walter, H. U.: Preparation of Dispersion Alloys- Component

Separation During Cooling and Solidification of Dispersions of

Immiscible Alloys. In Proc. Workshop on Effect of Gravity on

Solidification of Immiscible Alloys, Stockholm, January 18-20,

1984, ESA SP-219, March 1984, p. 47. (post-flight; specific

mission(s) unidentified)

(2) Greger, G. : TEXUS and MIKROBA and Their Effectiveness and Ex-

periment Results. Presented at: In Space '87, October 13 -14,

1987, Japan Space Utilization Promotion Center (JSUP) .

(identifies rocket failure)
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(3) Walter, H. U.: Dispersion Alloys TEXUS-Experiments: TEXUS-V

TEM-01 B, TEXUS VII, TEM-01 B. NASA TM-77531, December 1983.

(post-flight; in connection with other missions)

Contact(s):

Dr. Hans Walter

ESA-HQ

8-10, rue Mario-Nikis

F-75738 Paris Cedex 15

France

17-68



Principal Investigator(s): Walter, H. U. (i), Ziegler, G. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1,2) During TEXUS 3b: Deutsche Forschungs-und

Versuchsanstalt fur Luft-und Raumfahrt (DFVLR)-WB, Institut f_r

Werkstoff-Forschung, Cologne, Federal Republic of Germany, (1)

Currently: European Space Agency (ESA) Headquarters, Paris,

France; (2) Currently: Unknown

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 3b

Launch Date/Expt Date: April 1981

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-2 isothermal

furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Stability of Compound Mixtures (Immiscibles I)

This TEXUS 3b experiment was the fourth in a series of investiga-

tions designed by Walter et al. to explore the low-gravity

stability of liquid-liquid multi-component systems during melt-

ing, thermal soak, and solidification (see Walter, TEXUS i, TEXUS

2. TEXUS 3). The specific objective of this experiment was to

investigate and isolate the various mechanisms which govern com-

ponent separation in mixtures exhibiting a miscibility gap.

In a terrestrial laboratory, mixtures of Ag and Na-silicate pow-

ders were mixed, degassed, and hot compacted creating flight

samples of a theoretical density. Reportedly, the glass content

was 35 vol.%, 20 vol.%, and 17 vol.%. <Note: The exact number of

samples investigated was not reported in the available publica-

tions.> The samples were contained in a stainless steel crucible

and placed in the TEXUS Experiment Module TEM 01-2 isothermal

furnace for processing.

Just prior to the rocket launch, the samples were heated to 750

°C. After launch, and during the low-qravity period of the

flight, the samples were heated to 1150 °C and soaked at this

temperature for 2 minutes. Prior to the end of the low-gravity

period and prior to rocket reentry, the samples were cooled to

below 850 °C (Ag melt temperature is 950 °C).

Post-flight examination of all the flight samples revealed a com-

plete separation of the Ag and Na/silicate glass materials. The

glass coated the inside of the crucible; the Ag collected at the

core of the samples.
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Reportedly, because thermal gradients in the samples were mini-

mized and Ag is an excellent thermal conductor, Marangoni convec-

tion should have been negligible. Further, because mutually in-

soluble components were used, all coarsening mechanisms related

to nucleation and growth were avoided. Therefore, it was con-

cluded that separation was observed because of coalescence and

wetting due to the high glass volume fraction of the samples. It
could be shown, theoretically, that a dispersion containing a

minority component of greater than 12% would result in a coherent

network of interconnected particles. "This was the case, and the

remelting of such dispersions resulted in coalescence and

redistribution according to wetting conditions." (3, p. 240)

It was concluded that production of dispersions with immiscible

systems is not possible at high volume fractions.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Dispersion Alloys, Immiscible Fluids, Melt and Solidifica-

tion, Isothermal Processing, Powder Metallurgy, Multiphase Media,

Two-Phase System, Model Materials, Binary Systems, Metallic

Matrix, Glasses, Phase Separation, Separation of Components,

Stability of Dispersions, Liquid/Liquid Dispersions, Density Dif-

ference, Drops, Drop Migration, Thermomigration, Sedimentation,

Nucleation, Marangoni Convection, Marangoni Convection

Diminished, Buoyancy Effects, Wetting, Coarsening, Drop Coales-

cence, Thermal Soak, Solidification Front Physics, Liquid/Liquid

Interface, Solid/Liquid Interface, Crucible Effects, Coated Sur-

faces, Material Interaction with Containment Facility, Bubble

Removal

Number of Samples: unknown

Sample Materials: silver particles/sodium glass particles

(Ag*Na*)
Container Materials: stainless steel crucible

Experiment/Material Applications:

See Walter, TEXUS 1 (this chapter).
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References/Applicable Publications:

(i) Walter, H. U.: Preparation of Dispersion Alloys-Component

Separation During Cooling and Solidification of Dispersions of

Immiscible Alloys. In Proc. Workshop on Effect of Gravity on

Solidification of Immiscible Alloys, Stockholm, January 18-20,

1984, ESA SP-219, March 1984, p. 47. (post-flight)

(2) Walter, H. U.: Dispersion Alloys TEXUS-Experiments: TEXUS-V

TEM-01 B, TEXUS VII, TEM-01 B. NASA TM-77531, December 1983.

(post-flight; in connection with other missions)

(3) Immiscibles I. In Summary Review of Sounding Rocket Experi-

ments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February 1991, p. 240. (post-flight)

Contact(s):

Dr. Hans Walter

ESA-HQ

8-10, rue Mario-Nikis
F-75738 Paris Cedex 15

France
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Principal Investigator(s): Walter, H. U. (i), Ziegler, G. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1,2) During TEXUS 5: Deutsche Forschungs-und

Versuchsanstalt f_r Luft-und Raumfahrt (DFVLR)-WB, Institut f6r

Werkstoff-Forschung, Cologne, Federal Republic of Germany; (1)

Currently: European Space Agency (ESA) Headquarters, Paris,

France; (2) Currently: Unknown

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 5

Launch Date/Expt Datez April 1982

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-1, Chamber B

Builder of Processing Facility: ERNO Raumfahrttechnik, GmbH,

Bremen, Germany

Experiment:

Stability of Compound Mixtures (Immiscibles II)

This TEXUS 5 experiment was the fifth in a series of investiga-

tions designed by Walter et al. to explore the low-gravity

stability of multicomponent liquid-liquid systems during melting,

thermal soak, and solidification (see Walter, TEXUS i, TEXUS 2,

TEXUS 3, TEXUS 3b).

Earlier studies by Walter et al. were performed to separate and

evaluate gravity-dependent and gravity-independent mechanisms

which prevent binary systems with miscibility gaps from producing

dispersion alloys when solidified. Results from these previous

experiments demonstrated that dispersions require minority com-

ponent volume fractions below 12%. Therefore, this TEXUS 5 ex-

periment investigated the dispersion stability contributions of

these mechanisms using samples which contained less than 12 vol.%

of the minority component.

Before the TEXUS flight, six Ag-Na glass powder samples (ii, 9,

7, 5, 3, and 1 vol.% glass) and two AI-Bi samples (3.6 and 2.0

vol.% Bi) were de-gassed and compacted prior to incorporation

into crucibles. The eight crucibles were then stacked into a

single cartridge and configured in the TEM 01-i furnace (see Wal-

ter, TEXUS 1 (this chapter), for a general description of the ex-

perimental apparatus). /

Just prior to the rocket launch, the cartridge was heated to 750

°C. During the flight, the TEM 01 furnace produced an isothermal

heating range in one half the cartridge and a gradient heating

range in the other half. The samples containing ii vol.%, 9

vol.%, 7 vol.%, and 3 vol.% glass were located in the isothermal
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portion of the furnace; the 5 vol.% and 1 vol.% glass and the AI-
Bi samples were located within the gradient zone of the furnace
(gradients up to 150 °C/cm). (Samples were processed direc-
tionally in the gradient part of the furnace to investigate the
interaction between the moving solidification front and dispersed
particles.) Sample processing took place during the low-gravity
phase of the rocket flight.

Reportedly, the temperature required for homogenization of the
AI-Bi samples was not achieved "...since the samples were located
in the cold end of the cartridge and the temperatures were al-
together too low." (2, p. 25)

Post-flight analysis of the Ag-Na glass samples indicated that
(i) the 11%, 9%, and 7% glass samples experienced partial separa-
tion (see Walter, TEXUS i, TEXUS 2, TEXUS 3, and TEXUS 3b for
similar results) and (2) the 5%, 3%, and 1% glass samples had
final dispersions which were practically stable. Analysis of
these and earlier results led to the following conclusions:

(i) Material transport caused by Marangoni convection could be
neglected for the Ag-Na glass system.

(2) The stability of the dispersions increased with the decreas-
ing volume percentage of the minority phase. Stability first ap-
peared when volume percentages of the minority phase were less
than 7%. (Stability is defined as the remelted dispersion ap-
proximately corresponding to the starting dispersion.)

(3) An impoverished zone formed at the crucible wall because of
the formation of particle chains. The width of this impoverished
area corresponds to, at a particular concentration, the length of
the particle chains.

(4) There was no interaction between the particles and the
solidification front.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-
loys, Dispersion Alloys, Immiscible Fluids, Melt and Solidifica-
tion, Isothermal Processing, Directional Solidification, Powder
Metallurgy, Multiphase Media, Two-Phase System, Model Materials,
Binary Systems, Metallic Matrix, Glasses, Bubble Removal, Phase
Separation, Separation of Components, Stability of Dispersions,
Liquid/Liquid Dispersions, Droplet Dispersion, Particle Disper-
sion, Density Difference, Drops, Drop Migration, Thermomigration,
Mass Transfer, Sedimentation, Marangoni Convection, Marangoni
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Convection Diminished, Buoyancy Effects, Wetting, Thermal

Gradient, Solidification Front Physics, Liquid/Liquid Interface,

Solid/Liquid Interface, Crucible Effects, Material Interaction
with Containment Facility, Incomplete Sample Processing

Number of Samples: eight

8ample Materials: six samples: silver particles/sodium-glass par-
ticles (glass content from 1 vo1.% to 11 vo1.%); two samples: A1-

3.6 vol.% Bi, AI-2.0 vol.% Bi

(Ag*Na*, AI*Bi*)

Container Materials: molybdenum encased in common steel con-
tainer

(Mo*)

Experiment/Material Applications:

See Walter, TEXUS i.

References/Applicable Publications:

(i) Walter, H. U.: Preparation of Dispersion Alloys-Component

Separation During Cooling and Solidification of Dispersions of
Immiscible Alloys. In Proc. Workshop on Effect of Gravity on

Solidification of Immiscible Alloys, Stockholm, January 18-20,

1984, ESA SP-219, March 1984, p. 47. (post-flight)

(2) Walter, H. U.: Dispersion Alloys TEXUS-Experiments (TEXUS-V,

TEM-OI B, TEXUS-VII, TEM-OIB). NASA TM-77531, December 1983.

(post-flight)

(3) Immiscibles II. In Summary Review of Sounding Rocket Experi-
ments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February 1991, pp. 242-243. (post-

fl ight)

Contact(s):
Dr. Hans Walter

ESA-HQ

8-10, rue Mario-Nikis
F-75738 Paris Cedex 15

France
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Principal Investigator(s): Walter, H. U. (1), Ziegler, G. (2)

Co-Investlgator(s): Unknown

Affillation(s): (1) During TEXUS 7: Deutsche Forschungs-und Ver-

suchsanstalt fur Luft-und Raumfahrt (DFVLR)-WB, Institut fur

Werkstoff-Forschung, Cologne, Federal Republic of Germany; (1)

Currently: European Space Agency (ESA) Headquarters, Paris,

France; (2) Currently: Unknown

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 7

Launch Date/Expt Date: May 1983

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-2 (isothermal

zone furnace)

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Stability of Dispersions in Metallic Systems with Miscibility

Ga__m

This experiment was the sixth in a series of investigations

designed by Walter et al. to explore the low-gravity stability of

multicomponent liquid-liquid systems during melting, thermal

soak, and solidification (see Walter, TEXUS i, TEXUS 2, TEXUS 3,

TEXUS 3b, TEXUS 5).

"Previous experiments [by Walter et al.] with model systems and

powder metallurgically prepared samples had allowed the study of

the stability of liquid-liquid dispersions and in particular the

influence of the volume fraction. They had shown that the

stability of liquid-liquid dispersions can be obtained only for

volume fractions below 10%. The aim of this experiment was to

check the feasibility of producing metallic dispersions with sys-

tems having a miscibility gap in the liquid state." (3, p. 244)

During the TEXUS 7 experiment the following mechanisms were

investigated: (a) the effect of the volume fraction of the minor

phase, (b) the effect of Marangoni flows, and (c) the mutual ef-

fect with the solidification front on the stability of the dis-

persion.

Prior to the rocket flight, a total of eight samples were stacked

in a single cartridge. Samples 1 and 8 were AI-10.0 vol.% In,

samples 2 and 7 were AI-7.0 vol.% Bi, samples 3 and 5 were AI-9.0

vol.% Pb, and samples 4 and 6 were AI-5.0 vol.% Pb. Samples 1-4

were configured in the gradient zone of the TEXUS Experiment

Module TEM 01-2 furnace and samples 5-8 were configured in the
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isothermal zone of the furnace.

Prior to the rocket launch, the samples were heated above their

respective miscibility gap critical temperatures and maintained

at this temperature for 20 minutes. During the low-gravity phase

of the mission, they were cooled and solidified through the mis-

cibility gap. Thermal gradients larger than i000 °C/cm were es-

tablished for all samples in the gradient zone. Reportedly, even

the "isothermal" zone samples were subjected to gradients between

i0 and 30 °C/cm. "As an average, cooling through the miscibility

gap took i... [minute] so that the initi_l dispersion in the liq_
uid state should have been between I0 _ and i0 v inclusions/cm j

with diameters up to hundreds of microns." (3, p. 244)

Earlier work had determined that, for a volume percent greater

than (approximately) 10% of the minority phase, separation would

occur due to seed formation and subsequent coarsening by coales-

cence (see Walter, TEXUS 5). The metallic dispersions in this

TEXUS 7 experiment illustrated that for minority phase volume

percentages below 10%, dispersions over the entire sample were

obtained although (i) no dispersion with statistical distribution

of inclusions was obtained and (2) there was some separation

which was primarily due to Marangoni flow (see below).

Post-flight metallographic investigations were conducted on

each of the specimens.

AI-10 vol.% In:

Sample i, which was solidified in the "isothermal zone" and

sample 8, which was solidified in the gradient zone, were com-

pared. Reportedly, the two samples had clearly different struc-

tures. The gradient sample, which was positioned in the cooling

area, solidified "...from below and from the side; the dispersion

exhibits correspondingly linear structure .... " (2, p. 32) The

isothermal sample did not contain similar linear elements, rather

"...cloud like circular arrangements of the In-particles... sug-

gest a cellular non-directed solidification .... " (2, p. 32)
Eutectic structures were found in some areas.

AI-7 vol.% Bi:

As in samples 1 and 8 above, samples 2 ("isothermal") and 7

(gradient) clearly had different structures. Sample 2 contained

a cellular structure with an enrichment of Bi at its center.

This enrichment was attributed to Marangoni mechanisms. Sample 7
contained linear elements.

AI-9 vol.% Pb:

Comparison of sample 3 ("isothermal") and sample 5 (gradient)

again indicated different structures. Sample 3 had "...an

unusual, possibility radial symmetrical distribution of lead in

17-76



the aluminum matrix... In the center of the sample is a large

droplet-shaped lead inclusion.., the dispersion of lead becomes

distinctly more coarse toward the crucible wall." (2, p. 32)

Sample 5, which seems to have solidified quasi-isothermally, had

a fairly uniform distribution of lead.

AI-5 vol.% Pb:

Sample 4 ("isothermal") contained a dispersion which became

"...increasingly greater toward the top; the particle size.., be-

tween a few microns and 200 microns." (2, p. 35) Sample 6

(gradient) had a uniform distribution of particles (average

diameter near 50 microns).

For all samples (those in the gradient zone as well as those in

the "isothermal" zone) a distinct interaction between the inclu-

sions and the solidification front occurred. In the directed

solidification samples, inclusions were arranged in chains paral-

lel to the solidification direction, indicating (i) that a cel-

lular rather than planar front was present in the samples and (2)

that the inclusions were pushed toward the cell boundaries paral-

lel to the solidification front. In the quasi-isothermal

samples, the inclusions also mark the cell boundaries. This was

not observed in earlier experiments with the Ag-Na glass system.

By estimating the solidification rate for each sample, it was

found that "...the droplets interact mutually with the

solidification front up to a radius of 50 microns for a

solidification rate up to i/mm/s .... " (2, p. 38)

Surface tensions gradients, produced by thermal or solutal

gradients in the melt, resulted in Marangoni convection flow

around the droplets. This convective flow transported the drops

toward a higher temperature region (lower surface energy). By

comparing identical samples in the gradient and isothermal sec-

tions, Marangoni transport could, reportedly, be qualitatively

proven. The samples within the gradient section (gradients of 90

to 130 °C/cm) indicated that the hot side (that portion

solidified last) was enriched with droplets and pores. In the

AI-Bi 7 vol.% and the AI-Pb 9 vol.% samples solidified

"isothermally," there was also evidence of Marangoni transport.

"Since cooling took place from the outside inward, the highest

temperature was in the center of the crucible. Accordingly,

transport took place toward the crucible center." (2, p. 40) It

was also reported that for sample 1 (solidified isothermally)

"...no transport takes place as the result of marangoni

convection; either the dispersion is maintained or other

transport phenomena led to an energetically stable configuration,

in which the better wetting component is deposited at the

crucible walls .... Sample i... shows quite accurately the first

named distribution." (2, p. 39) The movement of the minority
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phase toward the center of the sample (resulting in a Bi or Pb
rich core at the center of the sample) was thus due to convective

flows toward the middle. The AI-Pb sample, however, showed large

inclusion toward the cell wall. This was probably due to the in-

creased rate of seed growth in this area which resulted from the

greater undercooling around the rim of the sample.

It was concluded that the results "...showed that the dispersions

needed for technological applications cannot be produced by

simply cooling through the miscibility gap even in microgravity.

Marangoni transport has to be counteracted or minimized." (3, p.

244)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Dispersion Alloys, Metallic Dispersion, Immiscible Fluids,
Melt and Solidification, Isothermal Processing, Directional

Solidification, Solidification Rate, Powder Metallurgy, Multi-

phase Media, Binary Systems, Phase Separation, Separation of Com-

ponents, Stability of Dispersions, Liquid/Liquid Dispersions,

Droplet Dispersion, Particle Dispersion, Density Difference,

Drops, Drop Migration, Particle Migration, Particle Transport,
Particle Size Distribution, Thermomigration, Mass Transfer,

Sedimentation, Coarsening, Drop Coalescence, Particle Coales-

cence, Surface Tension, Surface Tension Gradients, Surface

Energy, Marangoni Convection, Marangoni Movement of Droplets,

Marangoni Movement of Droplets, Wetting, Wetting of Container,

Crucible Effects, Thermal Gradient, Solutal Gradients,

Solidification Front Physics, Planar Solidification Interface,

Inclusion and/or Rejection of Particles, Undercooling,

Liquid/Liquid Interface, Solid/Liquid Interface, Sample

Microstructure, Inclusions, Cellular Morphology, Pores, Eutectics

Number of Samples: eight

Sample Materials: Isothermal samples (given in volume %): (Iso-l)

aluminum/indium (90/10%) , (Iso-2) aluminum/bismuth (93/7%) , (Iso-

3) aluminum/lead (91/9%) , (Iso-4) aluminum/lead (95/9%) ;

gradient samples (given in volume %): (Grad-5) aluminum/lead

(91/9%) , (Grad-6) aluminum/lead (95/5%) , (Grad-7)

aluminum/bismuth (93/7%), (Grad-8) aluminum/indium (90/10%)

(Al*In*, AI*Bi*, AI*Pb*)
Container Materials: All samples contained in alumina
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Experiment/Material Applications:

The alloy systems used in this study were selected with regard to

the following criteria:

(1) Minority phase maximum vol.% less than 10%.

_! Miscibility gap temperature range between 600 °C and 1500

(3) Components vapor pressure low within temperature range of in-

terest.

(4) Large component density deferences.

(5) Low component reactivity.

(6) Problem-free preparation and handling.

(7) Material non-toxicity.

Reportedly, the AI-Pb system has potential as a glide bearing

material. Thus, four samples of AI-Pb were processed and only two

samples of each of the other systems.

See Walter, Texus 1 (this chapter).

References/Applicable Publications:

(i) Walter, H. U.: Preparation of Dispersion Alloys-Component

Separation During Cooling and Solidification of Dispersions of

Immiscible Alloys. In Proc. Workshop on Effect of Gravity on

Solidification of Immiscible Alloys, Stockholm, January 18-20,

1984, ESA SP-219, March 1984, p. 47. (post-flight)

(2) Walter, H. U.: Dispersion Alloys TEXUS-Experiments: TEXUS-V,

TEM-01 B, TEXUS-VII, TEM-01 B. NASA TM-77531, December 1983.

(3) Dispersion Alloys. In Summary Review of Sounding Rocket Ex-

periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February 1991, ESA SP-II32, pp. 244-

245. (post-flight)

Contact(s):
Dr. Hans Walter

ESA-HQ

8-10, rue Mario-Nikis
F-75738 Paris Cedex 15

France

17-79



Principal Investigator(s): Fredriksson, H. (I)

Co-Investigator(s): Unknown

Affiliatlon(s): (1) Department of Casting of Metals, Royal In-
stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden
Mission_ TEXUS 2

Launch Date/Expt. Date: November 1978

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Swedish TEXUS experiment module containing
the GF 1 directional solidification furnace

Builder of Processing Facility: Swedish Space Corporation (SSC),
Solna, Sweden

Experiment:

Unidirectional Solidification of a Monotectic Pb-Cu Alloy

This TEXUS 2 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2 (Chapter 14)). The

specific objective of the experiment was to study the melting and

solidification of an immiscible alloy.

During the TEXUS 2 mission, a Pb-Cu alloy was directionally

solidified in one of the gradient furnaces (GF i) contained in

the TEXUS Swedish Module. (See Fredriksson, TEXUS i, "Dendritic

Growth and Segregation Phenomena, Eutectic Al-Cu and Hypereutec-

tic Al-Cu" (Chapter 14), for a detailed description of the fur-
nace.)

Reportedly, post-flight analysis of the thermal data indicated

that the sample was heat treated as planned.

No discussion of the sample evaluation could be located in the

available publications.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Dispersion Alloys, Metallic Matrix, Monotectic Composi-

tions, Binary Systems, Melt and Solidification, Directional

Solidification, Thermal Gradient, Liquid/Liquid Dispersions,

Liquid/Liquid Interface, Solid/Liquid Interface, Segregation
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Number of Samples: one

Sample Materials: lead-copper alloy

(Pb*Cu*)
Container Materials: unknown

Experiment/Material Applications:

See Fredriksson, TEXUS 2, Segregation Phenomena in Immiscible Al-

loys, Zn-Bi Alloy (this chapter).

References�Applicable Publications:

(i) Grahn, Cir. Ing. S.: Swedish Experiment Module. In

Shuttle/Spacelab Utilization Final Report Project, TEXUS II,

1978, pp. 214-222. (post-flight; discussion of hardware

performance).

Contact(s):

Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)

S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (i)

Co-Investigator(s): Unknown, possibly Carlberg, T. (2)

Affiliatlon(s): (1,2) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden

Mission: TEXUS 2

Launch Date/Expt. Date: November 1978

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Swedish TEXUS experiment module containing

four ellipsoidal mirror furnaces (MF 1, MF 2, MF 3, MF 9)

Builder of Processing Facility: Swedish Space Corporation (SSC),
Solna, Sweden

Experiment:

Segregation Phenomena in Immiscible Alloys: Zn-Bi Alloys

This TEXUS 2 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2 (Chapters 14 and

17). The specific objective of this experiment was to study

segregation phenomena in immiscible alloys (composite materials).

The experiment was performed in four ellipsoidal mirror furnaces

contained in the Swedish TEXUS experimental module. (See

Fredriksson, TEXUS I, Dendritic Growth and Segregation Phenomena,
Eutectic Sn-Zn (Chapter 14) for a detailed discussion of the fur-

nace.) During the TEXUS 2 mission, four 6-mm diameter, 5-mm long

Zn-Bi alloys (38 wt.% Bi, 24 wt.% Bi, and two 8 wt.% Bi) were

melted, heated above the miscibility gap, and isothermally

resolidified. One 8 wt.% Bi sample was naturally cooled

through the miscibility gap at a rate of 3.6 °C/sec, and the

other was cooled at a lower rate of 2.4 °C/sec by switching the

furnace lamps on and off. The other two samples were naturally

cooled at a rate of approximately 3.6 °C/sec. Corresponding con-

trol samples (8 wt.% Bi, 12 wt.% Bi, 16 wt.% Bi, 20 wt.% Bi, 24

wt.% Bi, and 38 wt.% Bi) were melted and resolidified under l-g

conditions. <Note: The exact cooling rates of the l-g processed
samples were not reported.>

Reportedly, all of the samples solidified under l-g conditions

exhibited significant segregation of Bi. Large Bi rich droplets

within the Zn matrix could be seen. The formation of these drops

was attributed to sedimentation (gravity effects) during cooling.

The two rocket-processed Zn-8 wt.% Bi samples (solidified at dif-

ferent rates) were distinctly different. The 2.4 °C/sec cooled

sample was surrounded by a thin, even layer of Bi and the Zn
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matrix contained a homogeneous distribution of particles. (The

particles had a mean size of 57.4 microns.) The 3.6 °C/sec

cooled sample had a less homogeneous distribution and a somewhat

thicker layer of Bi surrounding the Zn matrix. (The mean par-

ticle size was also somewhat smaller (49 microns).)

Examination of the low-gravity, 24 wt.% Bi sample revealed a

thick layer (approximately i00 microns maximum) of Bi around the

outside of the sample. A large Bi-rich area was located near the

center of the sample and was in contact with the container at one

point. The Bi particles were unevenly distributed and ranged in

size from 1 to 500 microns. Some of the larger particles were

irregularly shaped indicating particle collision.

The microstructure of the low-gravity, 38 wt.% sample was very

similar in terms of maximum particle size to that of the 24 wt.%

sample. However, the 38 wt.% sample lacked the large Bi-rich

region in the center. The reason for this may have been related

to the following: "Some of [the] Bi rich border [had] been

pressed out of the crucible, and the Bi-content in the sample

[had] thereby been lowered to less than 38%." (I, p. 238)

Reportedly, the Bi-rich layers around the samples were attributed

to either (i) a sedimentation effect caused by residual gravity

levels or (2) an inhomogeneous sample preparation prior to the

flight.

The low-gravity results were compared to a theoretical model

which considered a diffusion-controlled growth rate within the

miscibility gap. It was found that the calculated values of par-

ticle size were much lower than the values obtained from the

space processed samples, indicating that some sort of collision

effect was evident during precipitation.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Dispersion Alloys, Binary Systems, Two-Phase System, Metal-

lic Matrix, Melt and Solidification, Phase Separation, Diffusion,

Diffusion-Controlled Growth, Growth Rate, Solidification Rate,

Passive Cooling, Sedimentation, Segregation, Separation of Com-

ponents, Buoyancy Effects, Drops, Droplet Collision, Drop Forma-

tion, Precipitation, Homogeneous Dispersion, Liquid/Liquid Dis-

persion, Particle Dispersion, Particle Size Distribution,

Isothermal Processing, Sample Homogeneity, Liquid/Liquid Inter-

face, Solid/Liquid Interface, Sample Microstructure, Crucible Ef-

fects, Material Interaction with Containment Facility, Liquid

Leakage, Acceleration Effects
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Number of Samples: four

Sample Materials: bismuth-zinc. Two samples consisted of 8 wt.%

Bi, one consisted of 24 wt.% Bi, and one consisted of 38 wt.% Bi.
(Bi*Zn*)
Container Materlals: unknown

Experiment/Material Applications:

A major contributing feature to the property of a composite is
the size and distribution of the second phase material. It is

desirable that this distribution be as homogeneous as possible.

When solidifying immiscible alloys under 1-g conditions, separa-
tion of the matrix and second phase material occurs (similar to
the separation of oil and water) because of sedimentation and

buoyancy effects. It had been proposed that solidification of

immiscibles under low-gravity conditions should result in a

material with a homogeneous distribution of the second phase.
However, earlier low-gravity experiments had indicated that this

was not the case (e.g., see Reference (4) or L6hberg, SPAR 2,
Chapter 17). Rather, a large amount of separation occurred which

indicated other factors were present that controlled the separa-

tion of immiscible alloys. Some of these factors are masked by
gravitational effects and, therefore, cannot be investigated on
Earth. It was, therefore, proposed that these effects be inves-

tigated and their contributions evaluated under low-gravity con-
ditions.

The specific reasons why the Zn-Bi alloys were selected for this

experiment were not detailed in the available publications.

References/Applicable Publlcatlons:

(1) Carlberg, T. and Fredriksson, H.: The Influence of

Microgravity on the Structure of Bi-Zn Immiscible Alloys. In
Proceedings of 3rd European Symposium on Material Sciences in

Space, Grenoble, April 24-27, 1979, ESA SP-142, pp. 233-243.
(post-flight)

(2) Fredriksson, H.: Solidification Studies. In Shuttle/Spacelab

Utilization Final Report, Project TEXUS II, 1978, pp. 146-157.
(post-flight)

/

(3) Carlberg, T., Fredriksson, H., Sunnerkranz, P., Grahn, S.,
and Stenmark, L.: The Swedish Texus Experiment, A Technical

Description and Some Preliminary Results. Proceedings of Esrange
Symposium, Ajaccio, April 24-29, 1978, ESA SP-135, June 1978.

(preflight TEXUS 2; discusses ellipsoidal furnaces)
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(4) Lohberg, K., Dietl, P., and Ahlborn, H.: Segregation and

Solidification of Liquid Aluminum-Indium Alloys Under Zero

Gravity Conditions. In Space Applications Rocket Program-SPAR

II, Final Report, NASA TM-78125, pp. VIIII-VIII44, November 1977.

(reference to another experiment only.)

(5) Carlberg, T. and Fredriksson, H. : The Influence of

Microgravity on the Solidification of Zn-Bi Immiscible Alloys. In

Metallurgical Transactions A, Vol. IIA, October 1980, pp. 1665-

1676.

(6) Solidification of Immiscible Alloys (Zn-Bi). In Summary

Review of Sounding Rocket Experiments in Fluid Science and

Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-I132,

February 1991, pp. 250-251. (post-flight)

Contact(s):

Dr. H. Fredriksson or H. Shahani or T. Carlberg

Dept. of Casting of Metals

Royal Institute of Technology (RIT)
S-I0044 Stockholm 70

Sweden
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Principal Investlgator(s): Fredriksson, H. (I)

Co-Investigator(s): Fischmeister, H. (2)

Affiliation(s): (1) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden; (2) During TEXUS

2: Montanuniversit_t Leoben, Leoben, Austria, Currently: Max-

Plank Institut f_ Metallforschung, Stuttgart, Germany

Experiment Origin: Sweden
Mission: TEXUS 2

Launch Date/Expt. Date: November 1978

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Swedish TEXUS Experiment Module containing

one ellipsoidal mirror furnace (MF 10)

Builder of Processing Facility: Swedish Space Corporation (SSC),

Solna, Sweden

Experiment:
Isothermal Solidification of Zn-Pb

This TEXUS 2 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS I, TEXUS 2 (Chapters 14 and

17)). The specific objective of the experiment was to study the

solidification of an immiscible alloy.

The Zn-Pb alloy was processed in one of ten ellipsoidal mirror

furnaces contained in the Swedish Experiment Module of the TEXUS

sounding rocket. (See Fredriksson, TEXUS i, "Dendritic Growth

and Segregation Phenomena, Eutectic Sn-Zn" (Cahpter 14), for a

detailed description of the furnace.)

Reference (i) indicated that the "...control system response was

identical to pre-flight test runs and the performance of the fur-

nace can therefore be regarded as nominal." (i, p. 216).

No discussion of the post-flight sample evaluation could be lo-

cated in the available publications.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Two-Phase System, Phase

Separation, Melt and Solidification, Isothermal Processing,

Liquid/Liquid Dispersions, Liquid/Liquid Interface, Solid/Liquid

Interface, Segregation
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Number of Samples: one

Sample Materials: zinc-lead alloy

(Zn*Pb*)
Container Materials: unknown

Experiment/Material Applications:

See Fredriksson, TEXUS 2, Segregation Phenomena in Immiscible Al-

loys, Zn-Bi Alloys (this chapter).

References/Applicable Publications:

(i) Grahn, Civ. Ing. S.: Swedish Experiment Module. In

Shuttle/Spacelab Utilization Final Report Project, TEXUS II,

1978, pp. 214-222. (post-flight; discussion of hardware

performance)

Contact(s):
Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)
S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (i)

Co-Investigator(s): Unknown

Affiliation(s): (i) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden
Mission: TEXUS 3

Launch Date/Expt. Date: April 1980

Launched Fromz ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Unknown, probably the ESA/SSC experiment

module containing ellipsoidal mirror furnaces

Builder of Processing Facility: (If ESA/SSC module:) Swedish

Space Corporation (SSC), Solna, Sweden

Experiment:

Immiscible Alloys

This TEXUS 3 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2 (Chapters 14 and

17)). The specific objective of the experiment was to evaluate

the processing of immiscible alloys.

The composition of the experiment sample(s) and a description of

the processing facility were not detailed in the available publi-

cations.

Reportedly, TEXUS 3 did not achieve the desired low-gravity level

because of a rocket despin failure. The experiment was reflown

on TEXUS 3b (see Fredriksson, TEXUS 3b).

No further information of the TEXUS 3 experiment appears to be

available.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Acceleration Effects, Rocket Motion, Rocket Despin Failure

Number of Samples: unknown

Sample Materials: immiscible alloys, specific materials unknown
Container Materials: unknown
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Experiment/Material Applications:

unspecified

References/Applicable Publications:

(i) Greger, G.: TEXUS and MIKROBA and Their Effectiveness and

Experiment Results. Presented at: In Space '87, October 13-14,

1987, Japan Space Utilization Promotion Center (JSUP) .

(identifies rocket failure)

Contact(s):

Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)
S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (I)

Co-Investlgator(s): Unknown, possibly Bergman, A. (2)

Affiliatlon(s): (I) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden, (2) Unknown

Experiment Origin: Sweden

Mission: TEXUS 3b

Launch Date/Expt. Date: April 1981

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facillty: ESA/Swedish Space Corporation experiment
module containing ellipsoidal mirror furnaces

Builder of Processing Facility: Swedish Space Corporation (SSC),
Solna, Sweden

Experiment:

Immiscible Alloys

This Texus 3b experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2, TEXUS 3 (Chapters

14 and 17)). The specific objective of the experiment was to in-

vestigate the precipitation/coalescence process of droplets in a
liquid matrix.

Prior to the flight, eleven Zn-Bi samples were prepared for

processing. Three different compositions (4 wt.% Bi, 6 wt.% Bi,

and 9 wt.% Bi) with varying initial Bi particle distributions

were selected. The samples were configured within the isothermal

mirror furnaces of the TEXUS Swedish experiment module. (See

Fredriksson, TEXUS I, "Dendritic Growth and Segregation

Phenomena, Eutectic Sn-Zn" (Chapter 14), for a detailed descrip-

tion of the furnaces.) <Note: It appears that only ten mirror

furnaces were available in the experiment module. It is unclear

to the editors if one of the gradient furnaces was used for one

of the samples or if an extra mirror furnace was flown on this
mission.>

During the mission, the samples were heated to just above the

monotectic temperature. They were held at this temperature for a

period of time ranging from i0 to ii0 seconds. After this hold

time, the samples were allowed to cool down passively. <Note:

No other details concerning the thermal history of each sample

could be located in the available publications.>

It was reported that "The droplet distributions in the flight
samples were compared with the droplet distributions in reference

samples. It appeared that the coalescence process was much

faster than expected when considering only Ostwald ripening and
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collision processes. The larger the volume fraction of the

droplets, the larger was the difference between predictions and

observations. The precipitated liquid even formed a surface

layer around some samples in which the collision of the droplets

was enhanced accordingly." (i, p. 252)

No other discussion of the results from this experiment could be
located at this time.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Dispersion Alloys, Binary Systems, Metallic Matrix, Phase

Separation, Melt and Solidification, Drops, Drop Coalescence,

Droplet Collision, Droplet Dispersion, Droplet Size, Particle

Dispersion, Particle Size Distribution, Liquid/Liquid Dispersion,

Precipitation, Ostwald Ripening, Liquid/Liquid Interface,

Solid/Liquid Interface, Passive Cooling

Number of Samples: eleven

Sample Materials: Zn-Bi alloys with three different compositions:

(i) 4 wt.% Bi, (2) 6 wt.% Bi, and (3) 9 wt.% Bi

(Zn*Bi*)
Container Materials: unknown

Experiment/Material Applications:

See Fredriksson, TEXUS 2, "Segregation Phenomena in Immiscible

Alloys, Zn-Bi" (this chapter).

References/Applicable Publications:

(i) The Coalescence Process in Immiscible Alloys. In Summary

Review of Sounding Rocket Experiments in Fluid Science and

Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-I132,

February 1991, pp. 252-253. (post-flight)

Contact(s):
Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology _RIT)
S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (i)

Co-Investigator(s): Unknown, possibly Bergman, A. (2)

Affiliatlon(s): (1) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden; (2) Unknown

Experiment Origin: Sweden
Mission: TEXUS 5

Launch Date/Expt. Date: April 1982

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Swedish TEXUS experiment module containing
mirror furnaces

Builder of Processing Facility: Swedish Space Corporation (SSC),

Solna, Sweden

Experiment:

The Coalescence Process in Immiscible Alloys

This TEXUS 5 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b

(Chapters 14 and 17)).

The experiment was one of two solidification studies performed by

Fredriksson during the TEXUS 5 mission (see also Fredriksson,

TEXUS 5, "Undirectional Solidification of Immiscible Alloys"

(this chapter)). The specific objective of this TEXUS 5 experi-

ment was to study the precipitation and coalescence processes of

droplets in a liquid matrix.

Prior to the mission, seven Zn-4 wt.% Bi samples were prepared.

During this preparation, each sample was quenched at a different

rate; thus, each had a different initial Bi particle size. The

samples were placed in either graphite or boron-nitride crucibles

to allow the study of droplet coalescence dependency on

sample/crucible wetting characteristics.

During the low-gravity portion of the mission, the samples

isothermally processed by (i) heating above the monotectic tem-

perature, (2) holding at this temperature for a period of time,

and (3) cooling passively. <Note: No other discussion of the

thermal history was provided.> Reference samples were processed

on Earth for comparison.

Post-flight, the droplet distribution in the l-g and low-gravity

samples was compared. It was reported that, as in earlier low-

gravity experiments (see e.g., Fredriksson, TEXUS 3b), "...the

coalescence process was much faster than expected when consider-

ing only Ostwald ripening and collision processes. This was at-
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tributed to a Marangoni movement of the droplets. No influence

of the crucible material on the coalescence process could be

detected. The larger.., the initial drop size in the samples,

the faster.., the coalescence process." (4, p. 254)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Dispersion Alloys, Binary Systems, Metallic Matrix, Melt

and Solidification, Drops, Drop Coalescence, Droplet Dispersion,

Droplet Size, Particle Dispersion, Particle Size Distribution,

Liquid/Liquid Dispersion, Liquid/Liquid Interface, Surface Ten-

sion, Marangoni Movement of Droplets, Precipitation, Ostwald

Ripening, Segregation, Separation of Components, Isothermal

Processing, Passive Cooling, Solid/Liquid Interface, Crucible Ef-

fects, Wetting, Wetting of Container, Material Interaction with

Containment Facility

Number of Samples: seven

Sample Materials: Zn-4 wt.% Bi

(Zn*Bi*)
Container Materials: Some of the samples were in graphite

crucibles, others were in boron nitride crucibles.

(C*, B'N*)

Experiment/Material Applications:

See Fredriksson, TEXUS 2, "Segregation Phenomena in Immiscible

Alloys, Zn-Bi" (this chapter).

References/Applicable Publications:

(i) Bergman, A., Fredriksson, H., and Shahani, H.: On the

Mechanism of the Coalescence Process in Immiscible Alloys. 26th

IAF, International Astronautical Congress, Stockholm, Sweden, Oc-

tober 7-12, 1985, IAF Paper 85-274, 8 pp.

(2) J6nsson, R., Wallin, S., and Holm, P.: The Microgravity Re-

search Program Sweden. AIAA 6th Sounding Rocket Conference, Or-

lando, Florida, October 26-28, 1982. (post-flight; discusses

TEXUS 5 and 7 rocket furnaces)
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(3) Bergman, A., Fredriksson, H., and Shahani, H.: The Effect of

Gravity and Temperature Gradients on Precipitation in Immiscible

Alloys. Journal of Materials Science, 23 (1988), pp. 1573-1579.

(post-flight)

(4) The Coalescence Process in Immiscible Alloys. In Summary
Review of Sounding Rocket Experiments in Fluid Science and

Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-I132,
February 1991, p. 254. (post-flight)

Contact(s):

Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)
S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (1)

Co-Investigator(s): Unknown, possibly Bergman, A. (2)

Affiliation(s) : (1) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden; (2) Unknown

ExperimentOrigin: Sweden

Mission: TEXUS 5

Launch Date/Expt. Date: April 1982

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Swedish TEXUS Experiment Module containing

the Gradient Furnace Assembly

Builder of Processing Facility: Swedish Space Corporation (SSC),

Solna, Sweden

Experiment:
Unidirectional Solidification of Immiscible Alloys

This TEXUS 5 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b

(Chapters 14 and 17)).

The experiment was one of two solidification studies performed

during the TEXUS 5 mission (see also Fredriksson, TEXUS 5, "The

Coalescence Process in Immiscible Alloys" (this chapter)). The

specific objective of this TEXUS 5 experiment was to study the

effect of a temperature gradient on the precipitation of droplets

in an immiscible alloy.

Prior to the flight, two samples were prepared: (i) Cu-36 wt.% Pb

and (2) Cu-42 wt.% Pb. After preparation, each sample was placed

in its own graphite crucible (0.8 mm wall thickness, 65 mm long,

4 mm inner diameter).

The samples were configured within the furnaces of the Swedish

TEXUS Experiment Module such that the bottom of each sample was

threaded to a 6 mm copper rod. The copper rod was in contact

with a phase-change heat sink. (See Fredriksson, TEXUS i,

"Dendritic Growth and Segregation Phenomena, Eutectic AI-Cu and

Hypereutectic AI-Cu" (Chapter 14), for a more detailed descrip-

tion of the furnace facility.)

During the low-gravity portion of the mission (i) both samples

were melted, (2) the furnace was switched off, and (3) direc-

tional solidification was achieved via heat extraction through

the copper rod and phase-change heat sink. Temperatures were

measured at three locations in each sample.
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Post-flight analysis of the low-gravity, Cu-42 wt.% Pb sample

thermal data indicated that a solidification rate of 50 K/cm was
achieved at the beginning of the experiment and a solidification

rate of I0 K/cm was achieved at the end of the experiment. The

interface growth rate was determined to be 0.7 mm/sec. Metal-

lographic analysis indicated the presence of aligned composite

structure just above the unmelted portion of the Cu-Pb sample.

The amount of aligned structure decreased with distance from the

unmelted section. A large lead-rich area which formed at the top

of the sample was attributed to segregation effects.

Analysis of the l-g processed Cu-42 wt.% Pb sample (remelted to

i0 mm from the bottom, growth rate approx. = 0.4 mm/sec) revealed

a copper-rich structure just above the unmelted section. Above

this was a band of lead followed by an aligned structure. Above

the aligned structure (34 mm from the bottom of the sample) was a

copper dendritic structure. The top portion consisted entirely
of a copper-rich dendritic structure.

<Note: The above results were obtained from Reference (3). No

other publications which discussed the specific results from the

Cu-36 wt.% Pb sample could be located. The remainder of this

summary was obtained from Reference (4), which did not distin-

guish between the two samples.>

"It was observed that, in the space samples, the droplets

migrated towards the hotter region during the precipitation

process. In the ground processed samples [(melted and solidified

in the same furnaces on Earth)], a gravity-induced sedimentation

of the droplets occurred.

"A theoretical treatment of the experimental results was per-

formed. The theory relates the movement of the droplets to the

temperature dependence of the interfacial tension between the

liquid droplets and the liquid matrix." (4, p. 256) (See

Reference (3) for a discussion of the theoretical treatment.)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Melt and Solidification,

Directional Solidification, Thermal Gradient, _rops, Drop Migra-

tion, Thermomigration, Marangoni Movement of Droplets, Precipita-

tion, Interfacial Tension, Liquid/Liquid Interface, Liquid/Liquid

Dispersion, Solid/Liquid Interface, Segregation, Sedimentation,

Buoyancy Effects, Growth Rate, Solidification Rate, Sample
Microstructure, Dendritic Structure
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Number of Samples: two

Sample Materials: (I) Cu-36 wt.% Pb and (2) Cu-42 wt.% Pb

(Cu*Pb*)

Container Materials: graphite

(c*)

Experiment/Material Applications:

See Fredriksson, TEXUS 2, "Segregation Phenomena in Immiscible

Alloys, Zn-Bi Alloys" (this chapter).

The specific reasons why the Cu-Pb alloys were selected for this

experiment were not detailed in the available publications.

References/Applicable Publications:

(i) Bergman, A., Fredriksson, H., and Shahani, H.: On the

Mechanism of the Coalescence Process in Immiscible Alloys. 26th

IAF, International Astronautical Congress, Stockholm, Sweden, Oc-

tober 7-12, 1985, IAF Paper 85-274, 8 pp.

(2) Jonsson, R., Wallin, S., and Holm, P.: The Microgravity Re-

search Program Sweden. AIAA 6th Sounding Rocket Conference, Or-

lando, Florida, October 26-28, 1982. (post-flight; discusses

TEXUS 5 and 7 rocket furnaces)

(3) Bergman, A., Fredriksson, H., and Shahani, H.: The Effect of

Gravity and Temperature Gradients on Precipitation in Immiscible

Alloys. Journal of Materials Science, 23 (1988), pp. 1573-1579.

(post-flight)

(4) Unidirectional Solidification of Immiscible Alloys. In Sum-

mary Review of Sounding Rocket Experiments in Fluid Science and

Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-I132,

February 1991, pp. 256-257. (post-flight)

(5) Bergman, A., Carlberg, T., Fredriksson, H., and Stjerndahl,

J.: The Influence of Gravity on the Solidification of Monotectic

and Near Monotectic Cu-Pb alloys. In Materials Processing in the

Reduced Gravity Environment of Space, Proceedings of the

Materials Research Society Annual Meeting, Boston, Massachusetts,

November 1981, pp. 579-592. (preflight, ground-based results)
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Contact(s):
Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)
S-I0044 Stockholm 70

Sweden

17-98



Principal Investigator(s): Fredriksson, H. (i)

Co-Investigator(s): Unknown

Affiliation(s): (1) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden
Mission: TEXUS 7

Launch Date/Expt. Date: May 1983

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Swedish TEXUS Experiment Module containing

the Gradient Furnace Assembly

Builder of Processing Facility: Unknown, possibly Swedish Space

Corporation (SSC), Solna, Sweden

Experiment:

Unidirectional Solidification of Immiscible Alloys

This TEXUS 7 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b,

TEXUS 5 (Chapters 14 and 17)). The specific objective of this

investigation was to study the effect of a temperature gradient

on the precipitation of droplets in an immiscible alloy.

Prior to the TEXUS 7 flight, three Zn-Bi samples with additions

of 3% Cu or 3% Mg were prepared. <Note: The specific composi-

tions of the three Zn-Bi samples were not provided in the avail-

able publications.> After preparation, the samples were placed

in graphite crucibles.

The experimental procedure was the same as that employed during

the earlier TEXUS 5 experiment (see Fredriksson, TEXUS 5,

"Unidirectional Solidification of Immiscible Alloys" (this

chapter)).

It was reported that "During the precipitation process in

microgravity, the droplets migrated towards the hotter region of

the samples due to the Marangoni effect.

"On Earth, the sedimentation of the droplets occurred as expected

but was however balanced by the Marangoni effect when the hot

part of the sample was oriented upwards. No difference was ob-

served between the three samples. <Note: Presumably "the three

samples" refers to the three TEXUS 7 flight samples.> When com-

pared to previous space experiments, it appeared that the move-

ment of the droplets was faster in the Cu-Pb alloys than in the

Zn-Bi alloys. The theoretical treatment of the experimental

results [see Reference (3)] relates the motion of the droplets to
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their interfacial tension. The different behaviors observed in
Cu-Pb and Zn-Bi alloys is due to the different temperature depen-
dence of their interfacial tension." (4, p. 258) <Note: It ap-
pears that the "previous space experiments" concerning Cu-Pb al-
loys refers to a TEXUS 5 experiment by Fredriksson
"Unidirectional Solidification of Immiscible Alloys" (this
chapter).>

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-
loys, Ternary Systems, Phase Separation, Melt and Solidification,
Directional Solidification, Thermal Gradient, Drops, Precipita-
tion, Drop Migration, Thermomigration, Marangoni Movement of
Droplets, Interfacial Tension, Segregation, Sedimentation,
Separation of Components, Liquid/Liquid Interface, Liquid/Liquid

Dispersion, Solid/Liquid Interface

Number of Samples: three

Sample Materials: zinc-bismuth alloy samples (compositions

unknown) with additions of either 3% Cu or 3% Mg

(Zn*Bi*Cu*, Zn*Bi*Mg*)

Container Materials: graphite

(c*)

Experiment/Material Applications:

See Fredriksson, TEXUS 2, "Segregation Phenomena in Immiscible

Alloys, Zn-Bi Alloy" (this chapter).

The reasons why Cu and/or Mg were added to the Zn-Bi samples for

this experimemt were not discussed in the available publications.

References/Applicable Publications:

(I) Bergman, A., Fredriksson, H., and Shahani, H.: On the

Mechanism of the Coalescence Process in Immiscible Alloys. 26th

IAF, International Astronautical Congress, StoQkholm, Sweden, Oc-

tober 7-12, 1985, IAF Paper #85-274, 8pp.

(2) Jonsson, R., Wallin, S., and Holm, P.: The Microgravity Re-

search Program Sweden. AIAA 6th Sounding Rocket Conference, Or-

lando, Florida, October 26-28, 1982. (post-flight; discusses

TEXUS 5 and 7 rocket furnaces)
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(3) Bergman, A., Fredriksson, H., and Shahani, H.: The Effect of

Gravity and Temperature Gradients on Precipitation in Immiscible

Alloys. Journal of Materials Science, 23(1988), pp. 1573-1579.

(post-flight)

(4) Unidirectional Solidification of Immiscible Alloys. In Sum-

mary Review of Sounding Rocket Experiments in Fluid Science and

Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-I132,

February 1991, p. 258. (post-flight)

Contact(s):

Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)

S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (i)

Co-Investlgator(s): Unknown

Affiliatlon(s): (1) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden
Mission: TEXUS 12

Launch Date/Expt. Date: May 1985

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Swedish TEXUS experiment module containing a

gradient furnace

Builder of Processing Facility: Swedish Space Corporation (SSC),

Solna, Sweden

Experiment:

Unidirectional Solidification of Zn-Bi Samples

The structure of immiscible alloys after solidification depends

upon two effects: (i) the gravity-independent, Marangoni convec-

tive movement of the minority phase droplets and (2) gravity-

dependent sedimentation or flotation of the droplets. These two

phenomena can be distinguished by performing unidirectional

solidification experiments under l-g and low-gravity conditions.

This TEXUS 12 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS I, TEXUS 2, TEXUS 3, TEXUS 3b,

TEXUS 5, TEXUS 7, Spacelab i, TEXUS i0 (Chapters 13, 14 and 17).

The specific objective of the experiment was to investigate the

two effects mentioned above when the influence of gravity was
reduced.

Three Zn-Bi alloys were employed for this study (see the Sample

Materials section for compositions). Prior to the flight, pure

elements (Zn, Bi) were melted in argon using an induction heater.

After the liquid alloys were heated above the maximum temperature

of the miscibility gap, the center section of the cast ingots

were removed and machined to a diameter of 4mm and a length of 60
mm.

The samples were placed in a single graphite tube and configured

in the gradient furnace of the Swedish Experiment Module. Sur-

rounding the graphite was a stainless steel tube. Three ther-

mocouples were placed between the stainless steel tube and

graphite tube. The bottom of the sample contacted a Cu rod.
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During the mission, the samples were melted, the furnace power

switched off, and the Cu rod brought into contact with a phase-

change heat sink. This procedure resulted in directional

solidification of the samples.

Post-flight examination of the samples revealed that "...the

crucible[s] were not closed at the very top resulting in boiling

of... [zinc] during the [low-gravity] experiment .... The boiling

[was] due to the pressure drop in... [the low-gravity

environment]." (i, p. 56)

No other publications which discussed the experiment could be lo-
cated.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Phase Separation, Metallic Matrix, Melt and

Solidification, Directional Solidification, Thermal Gradient,

Minority Phase, Drops, Flotation of Drops, Drop Migration, Ther-

momigration, Marangoni Movement of Droplets, Marangoni Convec-

tion, Interfacial Tension, Sedimentation, Segregation, Separation

of Components, Liquid/Liquid Interface, Liquid/Liquid Dispersion,

Solid/Liquid Interface, Sample Microstructure, Boiling, Pressure

Drop, Processing Difficulties

Number of Samples: three

Sample Materials: (i) Zn-4 wt.% Bi; (2) Zn-6 wt.% Bi; (3) Zn-8
wt.% Bi

(Zn*Bi*)

Container Material: Graphite contained in stainless steel

(c*)

Experiment/Material Applications:

See Fredriksson, TEXUS 2, "Segregation Phenomena in Immiscible

Alloys, Zn-Bi Alloy" (this chapter).

References/Applicable Publications:

(I) Fredriksson, H.: Unidirectional Solidification of Zn-Bi

Samples. In TEXUS 11/12 Abschlussbericht 1985, German Publica-

tion, p. 56. (post-flight)
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Contact(s):

Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)
S-I0044 Stockholm 70

Sweden
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Principal Investlgator(s): Fredriksson, H. (i)

Co-Investigator(s): Unknown

Affiliation(s): (1) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden

Mission: TEXUS 14a

Launch Date/Expt. Date: May 1986

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: ESA/Swedish Space Corporation TEXUS experi-

ment module containing the Gradient Furnace Assembly (GFA). The

GFA was designed for directional solidification experiments and

was originally employed on TEXUS 12.

Builder of Processing Facility: Swedish Space Corporation (SSC),

Solna, Sweden

Experiment:

Unidirectional Solidification of Zn-Bi Samples

This TEXUS 14a experiment was one in a series of investigations

designed by Fredriksson to study low gravity solidification

phenomena (see Fredriksson TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b,

TEXUS 5, TEXUS 7, Spacelab I, TEXUS i0, TEXUS 12 (Chapters 13, 14

and 17)). The specific objective of the experiment was to inves-

tigate the directional solidification of Zn-Bi samples.

Reportedly, an unexpected "wobbling motion" of the TEXUS rocket

resulted in uncontrollab_e vehicle accelerations and the desired
low gravity level of i0 -= g was not attained. The experiment was

reflown on TEXUS 14b (see Fredriksson, TEXUS 14b).

No further information concerning this TEXUS 14a experiment ap-

pears to be available.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Metallic Matrix, Binary Systems, Phase Separation, Melt and

Solidification, Directional Solidification, Thermal Gradient,

Sedimentation, Liquid/Liquid Interface, Liquid/Liquid Dispersion,

Solid/Liquid Interface, Rocket Motion, Acceleration Effects
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Number of Samples: unknown

Sample Materlals: zinc-bismuth, specific compositions unknown
(Zn*Bi*)

Container Materlals: unknown, possibly boron nitride

(B,N*)

Experiment/Material Applications:

unspecified

References/Applicable Publications:

(i) Experimentelle Nutzlast und Experimente TEXUS 14.

BMFT/DFVLR TEXUS 13-16 Abschlussbericht 1988, pp. 53-55.
German; post-flight)

In

(in

(2) Experiment-Module ESA/SSC.

Abschlussbericht 1988, pp. 60-61.

In BMFT/DFVLR TEXUS 13-16

(gradient furnace assembly)

Contact(s) z

Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)
S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (i)

Co-Investigator(s): Unknown

Affiliation(s): (1) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden
Mission: MASER 1

Launch Date/Expt. Date: March 1987

Launched From: Esrange, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: One high precision isothermal furnace housed

within the Multi-Mission Mirror Furnace Module (M4)

Builder of Processing Facility: SAAB Space, Link6ping, Sweden,

and The Swedish Space Corporation, Solna, Sweden

Experiment:

Coalescence Process of Immiscible Alloys

This MASER 1 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b,

TEXUS 5, TEXUS 7, Spacelab i, TEXUS I0, TEXUS 12, TEXUS 14a

(Chapters 13, 14 and 17)). The specific objective of the experi-

ment was to investigate the role of droplet size and Marangoni

convection on the coalescence process in an immiscible Zn-Bi sys-

tem.

Prior to the mission, a single Zn-Bi sample was loaded into a

high precision isothermal furnace within the Multi-Mission Mirror

Furnace (M4) Module. Three mirror arrays and 30 halogen lamps

were configured within the furnace to produce the desired

isothermal temperature distribution on the 200-mm long sample.

Several thermocouples measured the temperature distribution

during processing.

Just prior to rocket launch, the sample was heated to 410 °C.

During the low-gravity phase of the flight, the temperature was

increased to 475 °C and the sample melted under isothermal condi-

tions. It was anticipated that the temperature would then stabi-

lize for I00 seconds. However, a malfunction of the furnace

(later attributed to "...a component failure in a standard volt-

age regulator..." (i, p. 22)) resulted in termination of the

melting. Solidification of the sample, via blowing nitrogen gas,

proceeded as planned and was completed prior to the re-entry

phase of the mission.

Publications which described the post-flight analysis of the

sample could not be located.
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Key Words: Systems Exhibiting A Miscibility Gap, Immiscible Al-

loys, Binary Systems, Phase Separation, Melt and Solidification,
Isothermal Processing, Drops, Drop Migration, Marangoni Movement

of Droplets, Marangoni Convection, Drop Coalescence, Droplet Dis-

persion, Droplet Size, Particle size Distribution, Liquid/Liquid

Dispersion, Liquid/Liquid Interface, Solid/Liquid Interface,

Quench Process, Halogen Lamps, Furnace Malfunction, Incomplete

Sample Processing

Number of Samples: one

Sample Materials: ZnBi, composition unknown

(Zn*Bi*)
Container Materials: unknown

Experiment/Material Applications:
See Fredriksson, TEXUS 2, ,,Segregation Phenomena in Immiscible

Alloys: Zn-Bi Alloys" (this chapter).

References/Applicable Publications:

(i) Zaar, J., and Anggard, K.: Maser and Its Effectiveness and

Experimental Results. In: In Space '87, Japan Space Utilization
Promotion Center (JSUP), October 13-14, 1987. (post-flight;

short description)

(2) J6nsson, R.: The Microgravity Program in Sweden - Emphasis on

the Materials Rocket Maser. In 15th International Symposium on

Space Technology and Science, Tokyo, Japan, May 19-23, 1986, Vol.

2, pp. 2099 - 2110. (preflight)

(3) Zaar, J., Bj6rn, L., and J6nsson, R.: Preliminary MASER 1
Results and the Evolution of the MASER Programme. In Proceedings

of the 8th ESA Symposium on European Rocket and Balloon

Programmes and Related Research, Sunne, Sweden, May 17-23, 1987,

ESA SP-270, pp. 359-361. (post-flight; very short description)

(4) Grunditz, H.: Flight Results of the ESA Experiment Modules in

MASER 1. In Proceedings of the 8th ESA Symposium on Rocket and

Balloon Programmes and Related Research, Sunne/ Sweden, 17-23 May

1987, ESA SP-270, pp. 363- 367. (post-flight)

(5) Grunditz, H.: Experiment Equipment for Metallurgy and Fluid

Science Studies Under Microgravity. 37th Congress of the Inter-

national Astronautical Federation, Innsbruck, Austria, October 4-

ii, 1986. (preflight)
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(6) J6nsson, R.: SSC Microgravity Sounding Rocket Program MASER.

37th Congress of the International Astronautical Federation, In-

nsbruck, Austria, October 4-11, 1986. (preflight)

Contact(s):
Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)

S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (i)

Co-Investlgator(s): Eliasson, A. (2)

Affillatlon(s): (1,2) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden

Mission: TEXUS 14b

Launch Date/Expt. Date: May 1987

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: ESA/Swedish Space Corporation TEXUS experi-

ment module containing the Gradient Furnace Assembly (GFA) (The

GFA was designed for directional solidification.)

Builder of Processing Facility: Swedish Space Corporation (SSC),
Solna, Sweden

Experiment:

Unidirectional Solidification of Zn-Bi Samples

This TEXUS 14b experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b,

TEXUS 5, TEXUS 7, Spacelab I, TEXUS I0, TEXUS 12, TEXUS 14a,

MASER 1 (Chapters 13, 14 and 17)).

The TEXUS 14b investigation, which was a repeat of Fredriksson's

TEXUS 14a experiment, had the same experimental objectives,

sample preparation, equipment setup, and processing procedure as

did Fredriksson's earlier TEXUS 12 experiment (see Fredriksson,

TEXUS 12). Briefly, the objective of the experiment was to in-

vestigate how the solidifying structure of immiscible alloys _,

depends on (I) the gravity-independent, Marangoni convective

movement of the minority phase droplets and (2) gravity-dependent

sedimentation or flotation of the droplets.

It appears that three Zn-Bi alloys were employed for the study

(see MATERIALS section for compositions). Prior to the flight,

pure elements were melted in argon using an induction heater.

After the liquid alloys were heated above the maximum temperature

of the miscibility gap, the center section of the cast ingots

were removed and machined to a diameter of 4mm and a length of 60
mm.

The samples were placed in graphite tubes, inserted into stain-

less steel cartridges, and configured in the gradient furnace of

the Swedish Experiment Module. Prior to launch, the samples were

preheated to 200 °C. During the low-gravity phase of the mis-

sion, (i) the samples were heated to 650 °C, (2) the furnace

power was switched off, and (3) the samples directionally
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solidified.

Reportedly, l-g reference experiments were performed to enable
comparison to the low-gravity results.

"The growth rate [of the low-gravity samples] deduced from the
temperature recordings could be expressed as follows:

v= 1.28...(* (sqrt z))]mm/sec. <Note: "z" was not
defined.> The temperature gradient was evaluated to be around 80
K/cm. The microstructure consisted of Bi-rich droplets
precipitated in a monotectic matrix. The number and the average
droplet size were evaluated as a function of the distance from
the heat sink." (3, p. 260) Reportedly, there were no Bi
droplets (TEXUS-processed samples) from the bottom of the samples
(nearest to the heat sink) to a distance of 3.5 cm (total sample
length of 6 cm). From this point the number and size of the
droplets increased with increasing distance up the samples. Ex-
amination of the reference samples also revealed no droplets near
the bottom. The portion of the reference samples from 2 to 3.5
cm (as measured from the bottom) contained a few large inclu-
sions. Above this region were large numbers of small droplets.

"The difference in droplet distribution between the reference ex-
periments and the flight experiments can be described by the
movement of the droplets due to gravity in the reference experi-
ments and the movement of the droplets due to Marangoni convec-
tion in the flight experiments. No explanation to the droplet
free area at the very bottom of the samples has been found." (i,
p. 69)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-
loys, Binary Systems, Monotectic Compositions, Metallic Matrix,
Phase Separation, Melt and Solidification, Directional
Solidification, Thermal Gradient, Minority Phase, Drops, Flota-
tion of Drops, Drop Migration, Thermomigration, Marangoni Move-
ment of Droplets, Marangoni Convection, Droplet Dispersion,
Liquid/Liquid Dispersion, Liquid/Liquid Interface, Precipitation,
Sedimentation, Separation of Components, Solid/Liquid Interface,
Sample Microstructure, Inclusions

Number of Samples: three

Sample Materials: (1) Zn-4 wt.% Bi, (2) Zn-6 wt.% Bi and (3) Zn-8

wt.% Bi.

(Zn*Bi*)
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Container Materials: graphite contained in stainless steel

(c*)

Experiment/Material Applications:

See Fredriksson, TEXUS 2, "Segregation Phenomena in Immiscible

Alloys, Zn-Bi Alloy" (this chapter).

References/Applicable Publications:

(i) Eliasson, A. and Fredriksson, H.: Unidirectional Solidifica-

tion of Zn-Bi Samples. In BMFT/DFVLR TEXUS 13 -16

Abschlussbericht, 1988, pp. 66-69. (post-flight)

(2) Experiment-Module ESA/SSC.

Abschlussbericht 1988, pp. 60-61.

In BMFT/DFVLR TEXUS 13-16

(gradient furnace assembly)

(3) Unidirectional Solidification of Zn-Bi Samples. In Summary

Review of Sounding Rocket Experiments in Fluid Science and

Materials Sciences, ESA SP-I132, February 1991, pp. 260-261.

(post-flight)

Contact(s):

Dr. H. Fredriksson or H. Shahani

Dept. of Casting of Metals

Royal Institute of Technology (RIT)

S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Fredriksson, H. (i)

Co-Investigator(s): Sunnerkrantz, P. A. (2)

Affiliation(s): (1,2) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden
Mission: MASER 2

Launch Date/Expt. Date: February 1988

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Multi-Mission Mirror Furnace Module (M4):

(One of the two available isothermal mirror furnaces was used.

The furnace employed three linear-elliptical mirror arrays.)

Builder of Processing Facility: Saab Space, Link6ping, Sweden,

and the Swedish Space Corporation, Solna, Sweden

Experiment:

A Study of the Coalescence Process of Immiscible Alloys in Larqe

Samples

This MASER 2 experiment was one in a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b,

TEXUS 5, TEXUS 7, Spacelab I, TEXUS i0, TEXUS 12, TEXUS 14a,

MASER I, TEXUS 14b (Chapters 13, 14 and 17)). The overall ob-

jective of the experiment was to study the coalescence process of

immiscible alloys. More specifically, the experiment was

designed to study the effect of droplet size and Marangoni con-

vection on the coalescence process.

The experiment was performed in the MASER Multi-Mission Mirror

Furnace Module (M4). The M4 contained two identical isothermal

mirror furnaces, one of which was used for this investigation.

(The other furnace was used by Kozma (see Kozma, MASER 2 (Chapter

18)).) The furnace was "...equipped with three linear-elliptical

mirror arrays and each array... [was] furnished with a set of ten

halogen lamps. These lamps... [were] individually controlled by

a microcomputer to give the correct temperature profile on the

sample .... " (i, p. 13) Three thermocouples in the sample and

nine thermocouples in the crucible were positioned to provide a

thermal record of the processing. A spring/piston assembly was

configured in the sample crucible to (i) insure good thermal con-

tact of the sample and (2) compensate for solidification

shrinkage (and, therefore, alleviate material free surfaces).

During the experiment, a single sample of Zn-Bi was processed.

The dimensions of this "large" sample were not detailed. It ap-

pears that the sample was preheated to 410 °C just prior to

launch (although this is not clearly stated in Reference (3)).
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It was reported that once the low-gravity phase of the mission

was attained, _I) the molten sample temperature was to be main-

tained at 425 QC and (2) quick melting and solidification was to

take place at near isothermal conditions. (Solidification was to

occur just prior to leaving the low-gravity phase of the mis-

sion.)

Post-flight examination of the payload indicated that (i) the M4

operated essentially as expected, (2) controlled heating and

cooling of the sample was achieved, and (3) sample material

leakage from the crucible into the furnace occurred and zinc con-

densed on some of the furnace mirrors. Reportedly, the flight

sample was 15 mm shorter than expected due to this material

leakage.

The flight thermocouple data (from the middle of the sample) in-

dicated that the sample melted approximately 300 seconds after

the low-gravity phase had been achieved (or 1150 seconds into the

flight). It was noted that this melting time was significantly

longer than the time it takes for a ground-based sample to melt

(95 seconds). An analysis of the entire thermocouple data avail-

able in the sample and crucible indicated that "...the melting

starts at one end and passes as a wave along the sample." (3, Ap-

pendix 5, p. 8) Cooling of the sample was initiated at 1190

seconds, solidification began at 1210 seconds, and complete

solidification was achieved at 1280 seconds (just prior to leav-

ing the low-gravity phase).

It was reported that the flight sample cooled slower than the

Earth-processed sample This slower cooling "...created a...
[20 °C] temperature difference between the sample and the

crucible. Large temperature differences also exist[ed] along the

sample." (2, Appendix 5, p. 8)

Preliminary metallographic examinations of the sample indicated

that an uneven droplet distribution was present. It was reported

that this distribution appeared to be "...very influenced by the

conditions during the cooling and solidification of the sample.

It... [was] also possible that some mixing of the melt... [was]

due to the movement involved in the leakage." (3, Appendix 5, p.

9)

Further discussion of the sample analysis was not presented and

additional information could not be located which described the

overall results of this experiment.
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Melt and Solidification, Thermal Gradient,

Isothermal Processing, Cooling Rate, Drops, Drop Migration,

Marangoni Movement of Droplets, Marangoni Convection, Drop

Coalescence, Droplet Dispersion, Droplet Size, Volume Compensa-

tion, Free Surface Elimination, Liquid/Liquid Interface,

Solid/Liquid Interface, Liquid/Liquid Dispersion, Sample

Shrinkage, Contamination Source, Liquid Leakage, Liquid Transfer,

Piston System, Halogen Lamps, Processing Difficulties

Number of Samples: one

Sample Materials: Zn-Bi

(Zn*Bi*)
Container Materials: unknown

Experiment/Material Applications:

See Fredriksson, TEXUS 2, "Segregation Phenomena in Immiscible

Alloys: Zn-Bi Alloys" (this chapter).

References/Applicable Publications:

(i) Zaar, J. and Dreier, L.: MASER II Final Report. RMLO/I-7,

Swedish Space Corporation, August 30, 1988. (post-flight)

(2) Zaar, J. and Anggard, K. : MASER and Its Effectiveness and

Experimental Results. In: In Space '87, October 13-14, 1987,

Japan Space Utilization Promotion Center (JSUP) . (short

description; preflight)

(3) The Coalescence Process of Immiscible Alloys in Large

Isothermal Samples. In MASER II Final Report, RMLO/I-7, Swedish

Space Corporation, August 30, 1988, Appendix 5, pp. 8-11. (post-

flight)

Contact(s):

Dr. H. Fredriksson or P. A. Sunnerkrantz

Dept. of Casting of Metals

Royal Institute of Technology (RIT)
S-I0044 Stockholm 70

Sweden

17-i15



Principal Investlgator(s): Fredriksson, H. (1)

Co-Investigator(s): Eliasson, A. (2)

Affillation(s): (1,2) Department of Casting of Metals, Royal In-

stitute of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden

Mission: MASER 2

Launch Date/Expt. Date: February 1988

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Swedish Space Corporation Gradient Furnace

(SSC/GF) (This equipment was used during the earlier MASER 1

mission (see Fredriksson, MASER 1).)

Builder of Processing Facility: Swedish Space Corporation, Solna,
Sweden

Experiment:

Gradient Solidification of Immiscible Alloys, Zn-Pb

The structure of immiscible alloys is dependent (in part) on (i)

convective flow resulting from the imposed thermal gradient and

acting gravitational force, (2) Marangoni movement of the

droplets as dictated by the thermal gradient, and (3) sedimenta-

tion or flotation of the droplets as dictated by the imposed
gravitational force.

This MASER 2 experiment was one of a series of investigations

designed by Fredriksson to study low-gravity solidification

phenomena (see Fredriksson, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b,

TEXUS 5, TEXUS 7, Spacelab i, TEXUS i0, TEXUS 12, TEXUS 14a,

MASER i, TEXUS 14b (Chapters 13, 14 and 17)). The specific ob-

jective of the experiment was to study "...the influence of a

thermal gradient on the precipitation of droplets during the

solidification of immiscible alloys." (4, p. 262)

Prior to the rocket launch, two 4-mm diameter, 65-mm long Zn-Pb

samples were prepared. The first sample consisted of 4 wt.% Pb

and the second sample consisted of 2.5 wt.% Pb. Each sample was

configured in its own furnace within the MASER Gradient Furnace

(GF) Module. (The GF module, which consisted of four furnaces in

all, was also used during MASER 2 for another experiment (see

Fredriksson, MASER 2, Primary Precipitated Crystal in Directional

Solidification Al-Cu (Chapter 14)).) The module was configured

such that the sample temperature could be measured at three dif-
ferent locations.

Just prior to the rocket launch, both furnaces were heated to 310

°C. Approximately 80 seconds after launch, rapid heating of the

two samples was initiated. At approximately 130 seconds after
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launch, the 2.5 wt.% Pb sample had been heated to 575 °C and the
4.0 wt.% Pb sample had been heated to 610 °C (both of these tem-
peratures were above the miscibility gap of the materials).
Unidirectional solidification was achieved when a copper plug

(which was in contact with the bottom of each sample) was brought

into contact with a phase change heat sink after the furnaces

were switched off. Heat was extracted through the copper plug

and into the heat sink (which contained paraffin wax). (The

samples were cooled through the miscibility gap during the low-

gravity rocket phase.)

Post-flight plots of the sample temperature-vs-time curves il-

lustrated that the growth rate of the monotectic solidification

front followed a parabolic growth law: v__ k*sqrt(t) where k =
1.9 (m) (sqrt(sec)) for the low-gravity (i0 g) samples and k

=1.6 (m) (sqrt(sec)) for the terrestrial (l-g) reference samples.

Preliminary results as summarized in Reference (3) included the

following:

"The temperature gradient was evaluated to be around 70 k/cm for

the 10 -4 g samples and around 80 k/cm for the l-g samples.

"The microstructure consist[s] of Pb-... [droplets] precipitated

in a monotectic matrix." (3, p. 5) <Note: Although it was stated

that "There is a clear and observable difference in droplet dis-

tribution between the ig and 10-4g samples" (3, p. 5), no further

details of these differences were presented.>

"[The droplet distribution].., can be explained by the movement

of the droplets due to gravity in the ig samples and the movement

of the droplets due to Marangoni convection in the 10-=[g]

samples." (3, p. 5)

Reference (4) briefly reported the following:

"The metallographic analysis of the samples indicated that the

precipitated droplets migrated as expected towards the hottest

regions of the samples due to interfacial tension gradients. A

theoretical analysis could be performed by correlating the obser-

vations with the thermal profile recorded during the flight. The

different migration velocities observed between the systems Zn-

Pb, Zn-Bi and Cu-Pb [see Fredriksson's work on other MASER and

TEXUS flights for information on these other systems] could be

related to the different temperature... [dependencies] of the

corresponding interfacial tensions. The migration velocity of

the droplets increases with an increasing temperature dependence

of interfacial tension (accordingly, the higher velocities were

observed in the Cu-Pb system).
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"In a Zn-Bi sample processed on the ground under thermally stabi-

lizing conditions (hottest region at the top of the sample), the

Marangoni effect even balanced the gravity-driven sedimentation

of Bi-rich droplets of given size." (4, p. 262)

Very little additional information concerning this experiment
could be located at this time.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Metallic Matrix, Binary Systems, Phase Separation, Melt and

Solidification, Directional Solidification, Thermal Gradient,

Minority Phase, Drops, Droplet Size, Drop Velocity, Particle Dis-

tribution, Drop Migration, Thermomigration, Interfacial Tension,

Marangoni Movement of Droplets, Marangoni Convection, Flotation

of Drops, Droplet Dispersion, Liquid/Liquid Dispersion,

Liquid/Liquid Interface, Precipitation, Sedimentation, Buoyancy-

Driven Convection, Monotectic Compositions, Sample Microstruc-

ture, Solid/Liquid Interface

Number of Samples: two

Sample Materials: (1) Zn-2.5 wt.% Pb, (2) Zn-4 wt.% Pb

(Zn*Pb*)

Container Materials: graphite

(c*)

Experiment/Material Applications:

Direct applications were unspecified for the Zn-Pb system.

References/Applicable Publications:

(I) Zaar, J. and Anggard, K.: Maser and Its Effectiveness and

Experimental Results. In: In Space '87, October 13-14, 1987,

Japan Space Utilization Promotion Center (JSUP), 32 pp.
(preflight)

(2) Zaar, J. and Dreier, L.: MASER II Final Report. RMLO/I-7,

Swedish Space Corporation, August 30, 1989. (post-flight)
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(3) Elisasson[sic], A. and Fredriksson, H.: Gradient Solidifica-

tion of Immiscible Zn-Pb Alloys in Maser II. In MASER II Final

Report, RMLO/I-7, Swedish Space Corporation, August 30, 1989, Ap-

pendix 3, 6 pp. (post-flight)

(4) Directional Solidification of Immiscible Alloys Zn-Pb. In

Summary Review of Sounding Rocket Experiments in Fluid Science

and Materials Sciences, ESA SP-I132, February 1991, pp. 262-263.

(post-flight)

Contact(s):

Dr. H. Fredriksson or A. Eliasson

Dept. of Casting of Metals

Royal Institute of Technology (RIT)

S-I0044 Stockholm 70

Sweden
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Principal Investigator(s): Pant, P. (i)

co-Investigator(s): Shifflett, L. (GSFC Technical Manager) (2)

Affiliation(s): (1) During TEXUS 2: FRIED. Krupp GmbH, Krupp

Forschungsinstitut, Essen, Federal Republic of Germany,

Currently: Unknown; (2) National Aeronautics and Space Ad-

ministration (NASA), Goddard Space Flight Center (GSFC), Green-

belt, Maryland

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 2

Launch Date/Expt. Date: November 1978

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01: Multi-

Purpose Furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Fundamental Studies of the Manqanese-Bismuth System

When a Mn-Bi alloy is in a liquid state, it exhibits a mis-

cibility gap. At 445 °C, an intermetallic, ferromagnetic com-

pound Mnl_xBi (with X approximately equal to 0.08) will form
peritectically. Upon further cooling to 340 °C, the high-

temperature Mnl_xBi phase decomposes and forms the low-
temperature, stoichiometric compound MnBi according to the

reaction:

Mnl.08Bi --> MnBi + Mn

It has been shown that Mn-Bi alloys of the peritectic composition

possess a high magnetic coercive strength. However, sedimenta-

tion and buoyancy, combined with the formation of peritectic en-

velopes around first-created crystals, tend to impede the con-

tinuous formation of the alloy structure. As a result, when a

manganese-bismuth alloy solidifies under l-g conditions, man-

ganese accumulates in the upper part of the melt because of den-

sity differences between the constituents. This characteristic

behavior results in a solidified alloy containing less than 20%

of the MnBi phase. On Earth, pure MnBi can only be produced by

powder technology, in the form of thin films and small monocrys-
tals.

This TEXUS 2 experiment was the first in a series of investiga-

tions designed by Pant et al. to study the effects of the low-

gravity environment on the solidification of a manganese-bismuth

alloy. The specific objectives of this experiment were to (i)

investigate the low-gravity processing of immiscible alloys for
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possible technical and commercial applications, (2) determine

whether gravity-independent mechanisms (e.g., Marangoni

convection) rather than gravity-dependent mechanisms

(sedimentation and buoyancy) were responsible for the separation

of the constituents of this immiscible alloy, and (3) determine

if the Mn-Bi peritectic reaction can proceed freely in the ab-

sence of gravity, resulting in either a fine and homogeneous dis-

persion of MnBi or even a specimen of pure MnBi.

Prior to the rocket flight, two Mn-Bi samples were prepared.

Sample 1 was composed of 50 at.% Mn/50 at.% Bi (stoichiometric

Composition) and sample 2 was composed of 27.34 at.% Mn/72.66

at.% Bi (peritectic composition). The two samples (each 10.7 mm

dia. and 19.6 mm long) were placed in Chamber C of the TEXUS Ex-

periment Module TEM 01 Multi-Purpose Furnace. (Chamber C was one

of four compartments available in the furnace. The other cham-

bers were not used by this Principal Investigator during this

mission.) A thermocouple was located at (i) each end of the

cartridge and (2) between the samples.

Prior to launch, the samples were heated to a temperature between

200 and 300 °C. Throughout the duration of the low-gravity

period (approximately 375 seconds at a gravity level less than
i0 = g) the samples were melted (1150 °C) and resolidified.

Prior to the rocket re-entry sequence, cooling of the samples to

less than 200 °C was accomplished by a He flow. The cooling rate

of sample 1 was 9.5 °C/s while that of sample 2 was 7.5 °C/s.

The thermocouple readings indicated that each sample was sub-

jected to a significant thermal gradient. A similar ground-

based, control experiment was performed for comparison purposes.

Post-flight examination of sample 1 revealed that a significant

amount of gaseous inclusions was distributed throughout the

sample. <Note: The source of the gas was not detailed.> (No in-

clusions were present in the corresponding l-g sample since the

gas escaped during melting and solidification.) The gas was un-

able to escape during the flight experiment and was able to form

inclusions within the solidified material. The sample had

small areas of segregation around the inclusions (probably due to

the interaction between the gas inclusions and melt). However,

the rest of the sample showed little gross segregation compared

to the l-g sample. The flight sample also had a 30% increase in

the MnBi peritectic phase over the l-g processed sample (18% by

wt. for the l-g sample versus 23% by wt. for the low-gravity

sample). A more uniform distribution of the MnBi phase and smal-

ler MnBi particle size were also evident in the reduced-gravity

sample. The particle size results agreed well with theory; in

the absence of thermal convection, particle growth is reduced.
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Flight sample 2 exhibited results similar to those of sample 1
with the exception that sample 2 had significantly fewer gaseous
inclusions resulting in less local segregation.

Coercivity values for the two flight and two ground-based samples
were determined at temperatures of 295 K, 77 K, and 4.2 K. Typi-
cally, the coercive strength of MnBi magnets is highly dependent
on temperature with coercivity values approaching zero at low
temperatures. Therefore, magnetization measurements at room tem-
perature were performed using a hystereosograph while those at
low temperatures were performed using a He-bath cryostat with a
superconducting magnet. The flight samples, in general, had a
significant improvement in coercivity values despite the presence
of anti-ferromagnetic Mn. This improvement was attributed to (i)
the small particle size of the MnBi phase, (2) an increase in the
percentage of the MnBi phase, and (3) the homogeneous distribu-
tion of the MnBi phase. Other details concerning the coercivity
measurement procedures can be found in Reference (i), p. 58.

Reportedly, this study did not determine if continuous peritectic
structure formation can be achieved in the low-gravity environ-
ment. However, ground-based experiments, using a new method,
where "...a quasi infinitely thin molten zone migrates through a
specimen consisting of a Mn-Bi alloy with 20% Mn" (i, p. 59)
indicated that it is possible (within a limited area of the
sample) to produce pure MnBi. Reportedly, with more time avail-
able under reduced-gravity conditions, it may be possible to
produce a pure MnBi intermetallic.

The following conclusions were reported:

(i) Gravity-independent forces had no effect on the solidifica-
tion of the samples.

(2) The low-gravity samples had a significant increase in the
amount of ferromagnetic MnBi phase.

(3) The low-gravity samples had a smaller particle size and more
uniform distribution of the MnBi phase than the l-g processed
samples.

(4) Magnetic property improvement of the low-gravity samples was
due to improved structure.
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Intermetallics, Ferromag-

netic, Peritectic Reaction, Stoichiometric Compound, Magnetic

Composites, Magnetic Properties, Coercive Strength, Phase Separa-

tion, Melt and Solidification, Thermal Gradient, Density Dif-

ference, Sedimentation, Buoyancy Effects, Segregation, Separation

of Components, Dispersion, Homogeneous Dispersion, Particle Dis-

persion, Particle Distribution, Particle Size Distribution, Par-

ticle Growth, Inclusions, Marangoni Convection, Marangoni Move-

ment of Droplets, Liquid/Vapor Interface, Liquid/Liquid Inter-

face, Liquid/Liquid Dispersion, Solid/Liquid Interface, Buoyancy

Effects Diminished, Sample Microstructure, Gas Formation, Bubble

Formation, Quench Process, Cooling Rate

Number of Samples: two

Sample Materials: Manganese-bismuth alloys: Sample i: 50 at.%

Mn/50 at.% Bi (stoichiometric composition); Sample 2: 27.34 at.%

Mn/72.66 at.% Bi (peritectic composition)

(Mn*Bi*)

Container Materials: molybdenum alloy TZM

(Mo*)

Experiment/Material Applications:

It has been shown that Mn-Bi alloys of the peritectic composition

possess a high magnetic coercive strength. This property is due

to the presence of the intermetallic MnBi phase. However, when

melted on Earth, the Mn tends to rise to the top of the crucible.

This separation results in (i) a decrease in the amount of Mn

available for the formation of the MnBi intermetallic and (2) a

decrease in the coercive strength since Mn is anti-ferromagnetic.

The production of large monocrystals of MnBi would be of major

importance for further investigations in the field of magnetics

and magneto-optics.

The compositions of the two Mn-Bi samples processed under low-

gravity conditions were selected as "...an appropriate supplement

to the Mn-Bi experiment with eutectic composition (2.2 at.% Mn;

97.8 at.% Bi) which was carried out during the ASTP mission." (I,

p. 50) (See Larson, ASTP (this chapter) to review the results of

the ASTP sample.)
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References/Applicable Publications:

(I) Pant, P.: Fundamental Studies in the Manganese-Bismuth Sys-

tem. Shuttle/Spacelab Utilization Final Report Project TEXUS II,

1978, pp. 48-61. (post-flight)

(2) Pant, P., Krupp, F., Wijingaard, J., and Haas, C.: Physical

Properties of MnBi Specimens Produced in Microgravity. 27th

Aerospace Sciences Meeting, January 9-12, 1989, Reno, Nevada.
(post-flight)

(3) Pant, P.: Grundlagenuntersuchungen im System Mangan-Wismut

unter verminderter Schwerkraft im Rahmen des TEXUS-II-Projektes.

Tech. Mitt. Krupp Forsch. Ber. Band 37 (1979), H. 2, pp. 70-78.

(4) Pant, P.: Fundamental Studies on the Manganese-Bismuth System

in Microgravity. Proc. 6th European Symposium on Material

Sciences Under Microgravity Conditions, Bordeaux, France, Decem-

ber 2-5, 1986, pp. 335-338. (post-flight)

(5) Pant, P.: Poster presentation of the results of the

microgravity experiments in TEXUS II, STS 007, and STS 025. Con-

ference on Gravitational Effects on Material Processes, August

17-21, 1987, New London, Hampshire. (post-flight)

(6) Pant, P., Wijingaard, J. H., and Haas, C.: Physical

Properties of MnBi-Specimens Produced in Microgravity. <Note:
The publication status of this document is unclear at this time.

Reportedly, the document was to be published in Journal of

Spacecraft and Rockets.> (post-flight)

(7) Input received from Principal Investigator P. Pant, June
1989.

(8) Fundamental Studies in the Manganese-Bismuth System. In Sum-

mary Review of Sounding Rocket Experiments in Fluid Science and

Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-II32,

February 1991, pp. 248-249. (post-flight)

Contact(s):

Dr. P. Pant

Current Work Address Unknown
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Principal Investigator(s): Pant, P. (i)

Co-Investigator(s): Shifflett, L. (GSFC Technical Manager) (2)

Affiliation(s): (1) During STS-007: FRIED. Krupp GmbH, Krupp

Forschungsinstitut, Essen, Federal Republic of Germany,

Currently: Unknown; (2) National Aeronautics and Space Ad-

ministration (NASA), Goddard Space Flight Center (GSFC), Green-

belt, Maryland

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: West German Get Away Special (GAS) MAUS Canister

DG-206A; SPAS STS Deployed Satellite
Volume of Canister: 5.0 cubic feet

Location of Canister: The West German Shuttle Pallet Satellite

(SPAS-01)

(SPAS was a small experiment carrier initially configured in the

STS payload bay but later deployed into orbit by the Canadian

Remote Manipulator Arm. The carrier was retrieved prior to the

end of the shuttle mission.)

Primary Developer/Sponsor of DG-206A: Deutsche Forschungs-und

Versuchsanstalt f_r Luft-und Raumfahrt (DFVLR) ,

Germany/Messerschmitt-Boelkow-Blohm (MBB-ERNO) , Bremen, Germany

<Note: The DFVLR is now called the Deutsche Forschungsanstalt fur

Luft- und Raumfahrt (DLR).>

Processing Facility: TEXUS Experiment Module TEM 01 (isothermal

four-chamber furnace)

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Fundamental Studies in the Manganese-Bismuth System (DG-206)

This STS-007 experiment was the second in a series of investiga-

tions designed by Pant et al. to study the effects of the low-

gravity environment on the solidification of a Mn-Bi alloy (see

Pant, TEXUS 2). The experiment was flown as part of the German

MAUS payload onboard the space shuttle (MAUS payload DG-206).

Earlier work by Pant during the TEXUS program indicated that

processing Mn-Bi alloys under reduced-gravity conditions resulted

in (i) a significant increase in the formation of MnBi phase, (2)

a smaller MnBi particle size and more uniform distribution of the

MnBi phase, and (3) magnetic property improvement over l-g

processed samples. It was believed that processing times longer

than that available during a sounding rocket flight would result

in samples with a higher MnBi phase content (and thus improved

magnetic properties).
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During the mission, eight Mn-50 at.% Bi samples were to be

processed in four chambers of the TEM 01 isothermal furnace. The

specimens were to be heated to 1150 °C, cooled down to the

peritectic temperature (455 °C), and held at this temperature for

up to 3 hours. However, because of an "...electromagnetic fault,

it was only possible to melt the two specimens in chamber A and

cool them down... [uncontrollably]." (3, p. 336)

Post-flight examination of the two melted specimens revealed the

presence of very large Mn particles. The formation of these par-

ticles was attributed to the slow cooling rate. Extremely large

MnBi crystals were also present in the samples.

Reportedly, the design of the MAUS equipment apparatus did not

allow the use of high cooling rates. High cooling rates are

necessary for the production of very fine Mn particles, and, in

turn, fine Mn particles are necessary for the peritectic reaction

(the formation of MnBi phase) to freely proceed. Therefore, it

was proposed that during the next flight experiment the following

time-temperature profile be utilized:

"Heating to the peritectic temperature with subsequent tempera-

ture oscillation around the peritectic temperature (delta T =

20°C) over a period of 180 min. and 60 min." (3, p. 336)

No further information concerning this experiment could be lo-
cated at this time.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Intermetallics, Peritectic

Reaction, Stoichiometric Compound, Magnetic Composites, Magnetic

Properties, Coercive Strength, Melt and Solidification, Isother-

mal Processing, Cooling Rate, Phase Separation, Density Dif-

ference, Sedimentation, Buoyancy Effects, Segregation, Separation

of Components, Dispersion, Homogeneous Dispersion, Particle Dis-

persion, Particle Distribution, Particle Size Distribution,

Liquid/Liquid Interface, Liquid/Liquid Dispersion, Solid/Liquid

Interface, Sample Microstructure, Hardware Malfunction, Process-

ing Difficulties, Sample Not Processed As Planned

Number of Samples: eight

Sample Materials: manganese-bismuth (50 at % Mn and 50 at % Bi)

(Mn*Bi*)
Container Materials: unknown

17-126



Experiment/Material Applications:

See Pant, TEXUS 2.

References/Applicable Publications:

(1) STS-7 Cargo Systems Manual:

sion, NASA JSC, December 21, 1982.

SPAS-01, JSC-18350 Final Ver-

(preflight)

(2) Pant, P., Krupp, F., Wijingaard, J., and Haas, C.: Physical

Properties of MnBi Specimens Produced in Microgravity. 27th

Aerospace Sciences Meeting, January 9-12, 1989, Reno, Nevada,

AIAA 89-030. (post-flight)

(3) Pant, P.: Fundamental Studies on the Manganese-Bismuth System

in Microgravity. In Proc. 6th European Symposium on Material

Sciences Under Microgravity Conditions, Bordeaux, France, Decem-

ber 2-5, 1986. (post-flight)

(4) Pant, P.: Poster presentation of the results of the

microgravity experiments in TEXUS II, STS 007, and STS 025. Con-

ference on Gravitational Effects on Material Processes, August

17-21, 1987, New London, Hampshire. (post-flight)

(5) Baum, D., Otto, G., and Vits, P.: MAUS-A Flight Opportunity

for Automated Experiments Under Microgravity Conditions. Acta

Astronautica, Vol. ii, No. 3-4, pp. 239-245, 1984. (no results

reported)

(6) Baum, D., Stolze, H., and Vits, P.: First Flight Data From

MAUS Payloads on STS 7 and STS ii. 35th Congress of the Interna-

tional Astronautical Federation, October 7-13, 1984, Lausanne,

Switzerland, IAF-84-137, ii pp. (post-flight)

(7) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report # EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special Canister mission

history)

(8) Input received from Principal Investigator P. Pant, June

1989.

Contact(s):

Dr. P. Pant

Current Work Address Unknown
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Principal Investigator(s): Pant, P. (i)

Co-Investigator(s): Shifflett, L. (GSFC Technical Manager) (2)

Affiliation(s): (1) During STS-025: FRIED. Krupp GmbH, Krupp

Forschungsinstitut, Essen, Federal Republic of Germany,

Currently: Unknown; (2) National Aeronautics and Space Ad-

ministration (NASA), Goddard Space Flight Center (GSFC), Green-

belt, Maryland

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #18, STS-025 (STS 51-G, Discovery)

Launch Date/Expt. Date: June 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: West German Get Away Special (GAS) MAUS Canister

DG-206B (Also designated as NASA Get Away Special (GAS) Canister

G-028)

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-028/DG-206B: Deutsche Forschungs-

und Versuchsanstalt fur Luft-und Raumfahrt (DFVLR) ,

Germany/Messerschmitt-Boelkow-Blohm (MBB-ERNO), Bremen, Germany

<Note: The DFVLR is now called the Deutsche Forschungsanstalt f_r

Luft- und Raumfahrt (DLR).>

Processing Facility: TEXUS Experiment Module TEM 01 (isothermal

four-chamber furnace)

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Fundamental Studies of the Manganese-Bismuth System

This STS-025 experiment was the third in a series of investiga-

tions designed by Pant et al. to study the effects of the low-

gravity environment on the solidification of a Mn-Bi alloy (see

Pant, TEXUS 2, STS-007). The experiment was flown as part of the

German MAUS program onboard the U.S. space shuttle.

The specific objectives of the investigation were to (i) deter-

mine whether other mechanisms, besides those due to gravity ef-

fects, were responsible for the separation of phases in the Mn-Bi

alloy and (2) determine if the Mn-Bi peritectic reaction can

proceed freely in the absence of gravity (see Pant, TEXUS 2).

Typically, homogenization of MnBi specimens /followed by rapid

cooling at the peritectic temperature results in a fine-grained
structure of Mn and MnBi within a Bi matrix. The available MAUS

hardware, however, was not equipped with a cooling gas supply and

rapid cooling was not possible. Therefore, a different time-

temperature profile was used (see Pant, STS-007, for a discussion

of this procedure).
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During the mission, six Mn-Bi samples (50 at.% Mn and 50 at.% Bi)
were melted and solidified in three chambers of the TEM 01

isothermal furnace. Before solidification, the sam_,les were
"...subjected to temperature oscillations between 450 C and 470

°C with I0 minute intervals for three hours." (9, p. 5) (The

peritectic temperature for the Mn-Bi system is 455 °C.)

Post-flight examination of the processed samples confirmed the

results from an earlier TEXUS 2 experiment by Pant et al.

Gravity independent Marangoni convection (resulting from dif-

ferences in interfacial energies between the MnBi particles) did

not produce segregation in the samples. Despite the lack of

rapid cooling, and thus the absence of the homogenization

process, the flight samples contained an extensive amount of MnBi

formation. Low temperature magnetization measurements (see

Reference (9) for experimental details) revealed that the samples

consisted of up to 44.4 mass percent MnBi.

The large amount of MnBi phase present in the procured materials

permitted the samples to undergo subsequent thermomechanical

treatment of the materials. Extrusion at 220 °C, produced

specimens which were 2 mm in diameter and up to 80 mm in length.

A major result of this treatment was very surprising: the ex-

truded flight material consisted of nearly 100% MnBi phase. It

was reported that this result was due to "...the high pressures

achieved during extrusion just below the melting point (a tem-

perature where Bi atoms already have high mobility) [which] in-

duces rapid diffusion and subsequent formation of the MnBi

phase." (9, p. 6) (Mn-Bi alloys solidified on Earth cannot

typically by subjected to this type of thermomechanical process;

differing hardnesses of the three phases (Mn, Bi, MnBi) and an

abundance of Mn in the system make the terrestrial samples dif-

ficult to deform.)

Low temperature magnetization measurements revealed that the ex-

truded flight samples contained up to 95.7% MnBi phase. Sub-

sequent X-ray diffraction measurements and cell parameter deter-

minations supported the presence of large amounts of the MnBi

phase. Room temperature magnetic measurements demonstrated that

extrusion results in the formation of the MnBi phase and "...also

imparts a texture which yields an improvement in the magnetic

values in a preferred direction." (9, p. 8)

Electrical resistivity measurements (at temperatures between 4.2

K and 300 K) were made of the flight and extruded flight

specimens and were compared to the TEXUS 2 flight specimens. Be-

cause the residual resistivity at T = 0 is due to atomic disorder

and foreign atoms within the crystalline phases, this measurement

provides an indication of the quality of the specimen.

Reportedly, the samples processed on the shuttle had lower
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residual resistivities than the TEXUS 2 specimens. The extruded

flight sample had the lowest residual resistivity of the three.

The residual resistivity of the low-gravity processed material

was compared to that from single crystals of MnBi (see Reference

(9) for source of the MnBi single crystal residual resistivity

data). It was determined that values for the extruded flight

material were one to two orders of magnitude higher than those

for single crystals of MnBi. This was attributed to a large

amount of atomic disorder and defects within the extruded flight

specimen caused by the extrusion process.

The low temperature resistivity of the extruded, 95% MnBi sample

illustrated a T _ dependency which could indicate a number of

scattering processes: s-d electron-electron scattering, magnon

scattering, and impurity (interstitial) scattering. However, th_
residual resistivity measurement and the large value of the T

multiplier indicated that magnon scattering is the process in ef-

fect. (Reference (6) also includes discussions on the Seebeck

and Hall effects.)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Intermetallics, Peritectic

Reaction, Stoichiometric Compound, Magnetic Composites, Magnetic

Properties, Melt and Solidification, Phase Separation, Density

Difference, Sedimentation, Buoyancy Effects, Segregation, Separa-

tion of Components, Dispersion, Homogeneous Dispersion, Particle

Dispersion, Particle Distribution, Interfacial Energy, Marangoni

Convection, Marangoni Convection Diminished, Diffusion, Thermal

Oscillations, Cooling Rate, Liquid/Vapor Interface, Liquid/Liquid

Interface, Solid/Liquid Interface, Sample Microstructure, Hard-

ness

Number of Samples: six

Sample Materials: 50 at.% Mn and 50 at.% Bi

(Mn*Bi*)

Container Materials: molybdenum alloy TZM

(MO*)

Experiment/Material Applications:

See Pant, TEXUS 2.
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References/Applicable Publications:
(i) Cargo Systems Manual: GAS Annex for STS 51-G, JSC-17645 51-G,

Rev.-A, March 20, 1985. (short description; preflight)

(2) Otto, G. H. and Baum, D.: Material Sciences Experiments Un-

der Microgravity Conditions with MAUS. In Goddard Space Flight

Center's 1985 Get Away Special Experimenter's Symposium, October

8-9, 1985, NASA CP-2401, pp. 101-108. (preflight)

(3) STS 51-G Press Kit, NASA Press Release 85-83, June 1985.

(preflight)

(4) Kolcum, E. H.: Fuel Contaminant Threatens Delay in Shuttle

Launch, AW&ST, June 17, 1985. (preflight)

(5) Otto, G. H. and Staniek, S.: Recent Results from MAUS

Payloads. In Goddard Space Flight Center's 1986 Get Away Special

Experimenter's Symposium, October 7-8, 1986, pp. 207-213, NASA

CP-2438. (post-flight)

(6) Pant, P., Krupp, F., Wijingaard, J., and Haas, C.: Physical

Properties of MnBi Specimens Produced in Microgravity. 27th

Aerospace Sciences Meeting, January 9-12, 1989, Reno, Nevada,

AIAA 89-0303. (post-flight)

(7) Pant, P.: Fundamental Studies on the Manganese-Bismuth Sys-

tem in Microgravity. Proc. 6th European Symposium on Material

Sciences Under Microgravity Conditions, Bordeaux, France, Decem-

ber 2-5, 1986, pp. 335-338. (post-flight)

(8) Pant, P. : Poster presentation of the results of the

microgravity experiments in TEXUS II, STS 007, and STS 025. Con-

ference on Gravitational Effects on Material Processes, August

17-21, 1987. (post-flight)

(9) Pant, P., Wijngaard, J. H., and Haas, C.: Physical

Properties of Mn-Bi Specimens Produced in Microgravity. <Note:

The publication status of this document is unclear at this time.

Reportedly, the document was to be published in Journal of

Spacecraft and Rockets.> (post-flight)

(i0) Get Away Special... the first ten years. Published by God-

dard Space Flight Center, Special Payloads Division, The NASA GAS

Team, 1989, p. 29. (post-flight; very brief description)

(ii) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report # EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special Cansiter mission

history)
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(12) Input received from Principal Investigator p. Pant, June1989.

Contact(s):

Dr. P. Pant

Current Work Address Unknown
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Principal Investigator(s): Pirich, R. G. (1), Larson, D. J., Jr.

(2)
Co-Investigator(s): Unknown

Affiliation(s): (1,2) Grumman Aerospace Corporation, Bethpage,

New York

Experiment Origin: USA

Mission: SPAR 6

Launch Date/Expt. Date: October 1979

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: Automated Directional Solidification System

(ADSS) (The ADSS was designed to insure that furnace transla-
tions resulted in a total ADSS momentum of zero.) <Note: The

ADSS was later called the Automated Directional Solidification

Furnace (ADSF).>

Builder of Processing Facility: General Electric, Pennsylvania.

<Note: It is not clear if this General Electric division was lo-

cated in Philadelphia, Pennsylvania or King of Prussia, Pennsyl-

vania.>

Experiment:
Directional Solidification of Maqnetic Composites (76-22)

Directional solidification of eutectic Bi/MnBi results in an en-

semble of MnBi rods, dispersed in a Bi terminal matrix solution.

The eutectic is sensitive to thermosolutal convections within the

melt. These convections result in growth rate fluctuations and

subsequently, microstructural variations. These variations often

lead to changes in rod diameter, interrod spacing,

electronic/magnetic properties, etc.

This SPAR 6 experiment was the first in a series of investiga-

tions designed by Pirich and/or Bethin et al. to study the low-

gravity directional solidification of a Bi/MnBi eutectic. It was

suspected that a reduction of thermosolutal convection would be

realized during the experiment, thus allowing an assessment of

the role of gravity driving microstructural variations.

Ninety minutes prior to the rocket launch, the four furnaces

within the Automated Directional Solidification System (ADSS)

were preheated. (Each furnace contained a single Bi/MnBi

sample.) Approximately 120 seconds after launch, the low-gravity

phase was attained, and commencement of solidification took

place. <Note: The specific preheating and processing tempera-

tures of each sample were not clearly stated.> The four samples

were solidified in a Bridgman-Stockbarger configuration; the

thermal gradients maintained at about i00 °C/cm, the furnace

speeds regulated at about 30 cm/hr.
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Reportedly, one of the ampoules broke at launch. Analysis of
the three other flight samples indicated that very uniform,
cooperative growth had occurred during the low-gravity process-
ing. Comparison of flight samples with similarly processed
ground-based samples indicated that the flight samples exhibited
significant reductions in (i) mean rod diameter, (2) interrod
spacing and (3) bulk volume fractions. Thermal profiles and mag-
netic properties of ground and flight samples were very similar.

Many other details concerning the sample analyses are discussed
in Reference (i).

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Eutectics, Magnetic Composites, Magnetic Properties, Fer-

romagnetic, Electrical Properties, Binary Systems, Melt and

Solidification, Directional Solidification, Bridgman Technique,

Thermal Gradient, Growth Rate, Furnace Translation, Solutal

Gradients, Thermosolutal Convection, Buoyancy-Driven Convection,

Dispersion, Particle Dispersion, Liquid/Liquid Interface,

Solid/Liquid Interface, Planar Solidification Interface, Interrod

Spacing, Sample Microstructure, Rod Structure, Rocket Vibration,

Acceleration Effects, Payload Survivability

Number of Samples: four

Sample Materials: bismuth/bismuth-manganese samples: 0.72 +/-

0.03 wt.% Mn resulting in a MnBi volume fraction of 3.18 +/-
0.09.

(Bi*/Mn*Bi*)

Container Materials: quartz

(Si*O*)

Experlment/Material Applications:

"The Bi/MnBi eutectic was chosen because its microstructure is

characterized by a regular rod eutectic morphology when grown by

plane-front solidification with cooperative growth .... " (1, p.VI-
i) Further, the system is "...sensitive to thermal and solutal

instabilities produced by convective flows. In addition, the

equilibrium phase of MnBi is highly ferromagnetic and its mag-

netic properties can be used to characterize the effect of

solidification processing and convection on rod size, shape, and

alignment." (1, p. VI-1)
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References/Applicable Publications;

(1) Pirich, R. G. and Larson, D. J.: SPAR VI Technical Report for

Experiment 76-22 - Directional Solidification of Magnetic Com-

posites. In Space Processing Applications Rocket Project SPAR VI

Final Report, NASA TM-82433, pp. VI-i - VI-58. (post-flight)

(2) Pirich, R. G., Larson, D. J. Jr., and Busch, G. : SPAR and

ASTP Studies of Plane Front Solidification and Magnetic

Properties of Bi/MnBi. AIAA 18th Aerospace Sciences Meeting,

January 14-16, 1980, Pasadena, California, AIAA-80-0119, 6 pp.

(post- flight )

(3) Pirich, R. G., Larson, D. J., and Busch, G. : Studies of

Plane-Front Solidification and Magnetic Properties of Bi/MnBi.

AIAA 80-0119R, AIAA Journal, Vol. 19, No. 5, May 1981. (post-

flight)

(4) General Electric Company, Space Sciences Laboratory, Operat-

ing Manual for Automated Directional Solidification System.

Prepared for NASA under Contract NAS8-35136, June 1978.

(processing facility)

Contact(s):

Ronald G. Pirich

Mail Code A01-026

Grumman Corporation

Bethpage, NY 11714-3580

Dr. David J. Larson, Jr.

Research Center A01-026

Grumman Corporation

Bethpage, NY 11714-3580
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Principal Investigator(s): Pirich, R. G. (1)

Co-Investigator(s): Unknown

Affiliation(s): (1) Grumman Aerospace Corporation, Bethpage, New

York

Experiment Origin: USA

Mission: SPAR 9

Launch Date/Expt. Date: January 1981

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: Automated Directional Solidification System

(ADSS)/Automated Directional Solidification Furnace (ADSF-1) (The

ADSS was designed to insure that furnace translations resulted in

a total ADSS momentum of zero.)

Builder of Processing Facility: Original configuration built by

General Electric, King of Prussia, Pennsylvania

Experiment:

Directional Solidification of Maqnetic Composites (76-22/2)

This SPAR 9 experiment was the second in a series of investiga-

tions designed by Pirich and/or Bethin et al. to study the low-

gravity directional solidification of a Bi/MnBi eutectic (see

Pirich, SPAR 6).

During the mission, four samples were solidified in a Bridgman

Stockbarger configuration in the Automated Directional

Solidification System (ADSS). A planar solidification interface

was produced at approximately 265 °C; a furnace gradient of i00

°C/cm was maintained. While a furnace velocity of 30 cm/h was

employed on SPAR 6, a 50 cm/h rate was employed during this SPAR
9 mission.

Flight samples were compared to similarly produced ground-

processed samples. Reportedly, the morphology of the flight

samples was striking. "As was observed during the SPAR VI ex-

periment conducted at a lower solidification velocity of 30 cm/h,

the MnBi rod diameter and interrod spacing distributions were

significantly smaller, approximately 50%, for the low gravity

samples. Accompanying the smaller MnBi rod diameters, the smal-

lest ever achieved in the Mn-Bi system, was an increase in per-

manent magnet properties. For example, the intrinsic coercivity

reached greater than 97% of the theoretical maximum, the largest

ever observed in the Mn-Bi system. Also, in-situ thermal

measurements during solidification showed a statistically sig-

nificant lower solidification temperature in low gravity compared

with one _ravity with an increased interfacial undercooling of
about 5.5 vC. In addition, a lower volume fraction of dispersed

MnBi, on the order of 8% was indicated for most of the low
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gravity interval of solidification. This suggests a change in

the equilibrium diagram in the vicinity of the eutectic composi-

tion which is in qualitative agreement with the increased under-

cooling noted during low gravity solidification. Gravitationally

induced convection is suggested to explain the morphological dif-

ferences between one and low gravity solidification." (i, p. III-

iii)

Many other details concerning sample analyses can be found in

Reference (i).

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Metallic Matrix, Eutectics, Magnetic Composites, Magnetic

Properties, Ferromagnetic, Electrical Properties, Binary Systems,

Melt and Solidification, Directional Solidification, Bridgman

Technique, Thermal Gradient, Undercooling, Solutal Gradients,

Thermosolutal Convection, Buoyancy-Driven Convection, Buoyancy

Effects Diminished, Dispersion, Particle Dispersion, Solidifica-

tion Rate, Liquid/Liquid Interface, Solid/Liquid Interface,

Planar Solidification Interface, Growth Rate, Furnace Transla-

tion, Interrod Spacing, Sample Microstructure, Rod Structure

Number of Samples: four

Materials: bismuth/bismuth-manganese samples: 0.72 +/- 0.03 wt.%

Mn resulting in a MnBi volume fraction of 3.18 +/- 0.09.

(Bi*/Mn*Bi*)

Container Materials: quartz

(Si*O*)

Experiment/Material Applications:

See Pirich, SPAR 6

References/Applicable Publications:

(i) Pirich, R. G.: SPAR IX Technical Report for Experiment 76-22

Directional Solidification of Magnetic Composites. In Space

Processing Applications Rocket (SPAR) Project, SPAR IX Final

Report, NASA TM-82549, pp. III-i - III-46, January 1984. (post-

flight)
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(2) DeCarlo, J. L. and Pirich, R. G.: Directional Solidification

of Bi-Mn Alloys Using an Applied Magnetic Field. Final Report, 1

January I, 1984-December 31, 1986 (Grumman Research Corporation),

NASA CR-179127, 46 pp. (related ground-based research)

(3) General Electric Company, Space Sciences Laboratory, Operat-

ing Manual for Automated Directional Solidification System.

Prepared for NASA under Contract NAS8-31535, 1978. (processing

facility)

Contact(s):
Ronald G. Pirich

Mail Code A01-026

Grumman Corporation

Bethpage, NY 11714-3580
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Principal Investigator(s): Potard, C. (1)
Co-Investlgator(s): Morgand, P. (2)
Affiliation(s): (1,2) During SPAR 9: D_partement de Metallurgie,
Lab. d'Etude de la Solidification, Centre d'Etudes Nucleaires de

Grenoble (CENG), Grenoble, France; (1) Currently: Centre d'Etudes

et de Recherches sur les Materiaux (CEREM), Departement d'Etudes

des Materiaux (DEM), Centre d'Etudes Nucleaires de Grenoble

(CENG), Grenoble, France; (2) Currently: Retired

Experiment Origin: France
Mission: SPAR 9

Launch Date/Expt. Date: January 1981

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: General Purpose Rocket Furnace (Two of the
three available heated cavities in the GPRF were dedicated to

this experiment.)

Builder of Processing Facility: National Aeronautics and Space

Administration (NASA), Marshall Space Flight Center, Huntsville,

Alabama

Experiment:

Directional Solidification of Immiscible Aluminum Indium Alloys

(Experiments 76-51/1 and 76-51/2)

This SPAR 9 experiment was the first in a series of investiga-

tions designed by Potard et al. to study low-gravity directional

solidification. The specific objectives of the investigation

were to (i) analyze the mechanisms which control the solidifica-

tion process of an immiscible alloy and (2) obtain a regularly

dispersed structure of a hypermonotectic composition.

Two of the three cavities of the SPAR 9 General Purpose Rocket

Furnace (GPRF) were dedicated to this experiment. Each cavity

contained two silicon carbide cartridges. In the first cavity,

each cartridge contained a hypermonotectic composition AI-32.08

wt.% In sample. In the second cavity, one cartridge contained a

sample of the hypermonotectic composition and the other cartridge

contained a monotectic composition AI-16.0 wt.% In sample. It

was noted that "Because of the non-regular shape of the

crucible..., total [ground-based] filling was not possible. Con-

sequently, large free volumes were unavoidable. This drawback

may lead to perturbations of the thermal field and of liquid

dynamics." (i, p. IV-4)

Prior to the rocket flight, the samples were heated to well above

the solidus (see Reference (i) or Reference (2) for

time/temperature profiles of the experiment). At the time of the

rocket launch, the sample temperatures ranged from 735 °C to 860
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°C. During the rocket flight, the samples in the first cavity

were subjected to a high thermal gradient and the samples in the

second cavity were subjected to a low thermal gradient. The

samples were molten throughout the low-gravity phase of the

rocket flight. Solidification was initiated prior to the re-

entry period by introducing a He gas flow along the outside of

the cavities. Similar samples were processed on Earth for com-

parison.

Post-flight examination of the samples was achieved via (i)

gamma-ray and metallographic (light metallography, SEM) tech-

niques as well as (2) thermal analysis techniques. (A discussion

of the thermal analysis is provided in Reference (i).) It was

reported that the main result of the research "...lies in the

preservation of a certain degree of dispersion of the indium

primary phase. This result is radically different from those al-

ready obtained under microgravity conditions on the same system

and compositions [e.g., see L6hberg, SPAR 2 (this chapter)]." (2,

p. 252)

The main reasons for the above result were reported to be:

(i) capillarity factors: (a) differential wetting of A1 and In on

the silicon carbide cavity surface and (b) capillary convection

due to thermal gradients and concentration gradients and

(2) solidification factors: (a) interaction between solidifica-

tion front and second phase material and (b) coalescence of

second phase globules.

It was further reported that the presence of free volumes created

difficulties in interpreting the results, as expected (see

Reference (i) or Reference (2) for detailed discussion of

results).

Analysis/Results of each of the four flight samples and similarly

processed ground based samples are presented in detail in

Reference (i).

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Monotectic Composition_, Hypermonotectic

Compositions, Metallic Matrix, Phase Separation, Melt and

Solidification, Directional Solidification, Interface Physics,

Solidification Front Physics, Homogeneous Dispersion,

Liquid/Liquid Dispersion, Liquid/Liquid Interface, Particle

Coalescence, Drop Coalescence, Segregation, Free Surface, Surface

Tension, Thermal Gradient, Solutal Gradients, Wetting, Wetting of
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Container, Capillary Flow, Capillary Forces, Thermocapillary Con-

vection, Marangoni Convection, Solid/Liquid Interface, Quench

Process

Number of Samples: four

Sample Materials: three AI-32.08 wt.% In samples, one AI-16.0

wt.% In sample

(Al*In*)

Container Materials: silicon carbide

Si*C*

Experiment/Material Applications:

The specific reason why these Al-In alloys were selected for the

experiments was not detailed in the available publications.

References/Applicable Publications:

(i) Potard, C.: SPAR IX Experiments 76-51/1 and 76-51/2 Direc-

tional Solidification of Immiscible Aluminum-Indium Alloys. In

Space Processing Applications Rocket (SPAR) Project, SPAR IX

Final Report, NASA TM-82549, pp. IV-I - VI-79, January 1984.

(post-flight)

(2) Potard, C.: Structures of Immiscible Alloys Solidified Under

Microgravity Conditions. Acta Astronautica, Vol. 9, No. 4, pp.

245-254. (post-flight)

(3) Directional Solidification of Al-In Alloys in Microgravity:

Results of the Basic Preparatory Investigations. AIAA 17th

Aerospace Science Meeting, New Orleans, 1978, pp. 1-8.

(preflight)

(4) Input received from Experiment Investigator, July 1989 and

August 1993.

Contact(s):

Dr. Claude Potard

Centre d'Etudes Nucleaires de Grenoble (CENG)

Centre d'Etudes et de Recherches sur les Materiaux (CEREM)

Departement d'Etudes des Materiaux (DEM)

Boite Postale 85X

38041-GRENOBLE Cedex

France

17-141



Principal Investigator(s): Heide, W. (i)
Co-Investlgator(s): ESA-ESTEC (2)
Affillation(s): (1) Battelle-Institute, Frankfurt, Germany; (2)

Noordwijk, The Netherlands

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 5

Launch Date/Expt. Date: April 1982

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Typez Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 02-1 (large-

chamber furnace and acoustic mixer). (The mixer was designed to

operate within previously existing furnace hardware.)

Builder of Processing Facility: Acoustic Mixer: Battelle In-

stitute, Frankfurt, Germany; Furnace: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Germany

Experiment:

Acoustic Mixinq

Previous low-gravity research concerning the processing of immis-

cible alloys (e.g., see Fredriksson, TEXUS 2 (this chapter))

revealed that the solidification behavior of these systems was

more complicated than originally anticipated. Sedimentation and

buoyancy, for example (gravity-dependent phenomena) were not the

only factors contributing to the separation of alloy con-

stituents. Wetting and thermocapillary effects also limited the

stability of the alloy systems.

This TEXUS 5 experiment was the first in a series of investiga-

tions designed by Heide and/or Langbein et al. to study the be-

havior of immiscible systems under low-gravity conditions.

An acoustic mixer, used to ultrasonically mix metallic melts, was

developed for the experiment. The mixer allowed low-temperature

processing of the immiscible material: the two components were

heated to just above their respected melt temperatures.

(Previously, alloys had been heated above the miscibility gap to

mix the components.) Thus, the benefits of acoustic mixing in-

cluded (i) a reduction in experiment power requirements and (2) a

shortened sample cooling time. These benefits were important be-

cause of the short low-gravity period (approximately 6 minutes)

available during the TEXUS sounding rocket mission.

Reportedly, the objectives of the investigation were to (I) func-

tionally test the acoustic mixer under low-gravity conditions,

(2) produce a fine dispersion alloy from a binary system exhibit-

ing a liquid-phase miscibility gap, and (3) study the particle

growth in a finely-dispersed metal-melt emulsion.
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Prior to launch, a Zn-5 wt.% Pb sample was placed in a metal
cartridge. Two thermocouples, configured at the bottom of the
first- and second-thirds of the outside of the crucible (TI and
T2, respectively) were used to monitor temperature. The mixing
system consisted of a piezoelectrically excited, stepped horn
transducer which was mounted to the furnace structure. The
acoustic energy radiates into the molten material via a mixing
tool. "The front face cooler... [was]... fixed to the [sample]
cartridge and in direct contact with the melt. The tip of the
mixing tool... [was]... sealed against the mounting structure by
a metal diaphragm to confine the metal melt to the cartridge.
[The] cartridge and diaphragm... [were]... CVD-coated with TiN or
covered with flexible graphite foil to avoid inter-metallic al-
loying with the contacting melt." (i, p. i00)

A functional test of the hardware was conducted between 400 and
350 seconds before launch. Then, just prior to launch, the Pb-Zn
alloy was melted using the TEM 02 large chamber furnace equipped
with the acoustic mixer.

Sixty seconds after launch, the mixer was automatically in-
itiated. The sample temperature was between 474 and 484 °C) at
this time. At 150 seconds after launch, directional solidifica-
tion was initiated by He blast cooling. Thermocouple T1 indi-
cated that the temperature at this location was 418 °C
(solidification temperature) at 255 seconds after launch. At
this time "...the ultrasonic mixing was interrupted to allow un-
disturbed coagulation of the Pb-Zn emulsion within the middle
zone of the sample." (i, p. I01) The mixer was then switched
back on when the solidification front reached T2 (309 seconds
after launch). The mixer was switched off when the temperature
at T2 reached 390 °C (380 seconds after launch). On Earth,
reference samples were similarly processed for comparison.

Post-flight examination of the Pb-Zn sample indicated that the
performance of the acoustic mixing system was satisfactory and
the metal melt was emulsified. Specifically, "...the coalescence
of the inclusions during the directional solidification of a bi-
nary alloy with miscibility gap in the liquid state can be coun-
teracted by continuously dispersing them with an acoustic mixer."

(4, p. 268) As expected, at the time the acoustic mixer was shut

off, the low-gravity sample exhibited weaker coagulation than ob-

served in the l-g reference sample. In both samples coagulation

resulted in an increase in the lead particle diameter when the

mixer was swithched off. However, the diameters of the lead par-

ticles in the low-gravity sample were smaller than those of the

l-g sample. This difference was attributed to the weaker

coagulation in the low-gravity processed material.
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since the relatively low lead content (5 wt.% Pb = 3 vol.% Pb)

ensured emulsification and the mixing system was successfully

tested, it was decided that during the next low-gravity experi-

ment (see Heide, TEXUS 8 (this chapter)) a sample material con-

taining a larger volume percent of the minority phase would be

processed.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Phase Separation, Melt and
Solidification, Directional Solidification, Acoustic Mixing,

Sedimentation, Buoyancy Effects, Separation of Components,

Liquid/Liquid Interface, Liquid/Liquid Dispersion, Homogeneous

Dispersion, Stability of Dispersions, Emulsion, Inclusions,

Coagulation, Particle Coalescence, Particle Size Distribution,

Particle Growth, Wetting, Surface Tension, Thermal Gradient,

Thermocapillary Flow, Thermocapillary Convection, Marangoni Con-

vection, Solid/Liquid Interface, Material Interaction with Con-

tainment Facility, Coated Surfaces, Quench Process

Number of Samples: one

Sample Materials: immiscible alloy: 5 wt.% Pb, 95 wt.% Zn

(Pb*Zn*)
Container Materials: metallic cartridge and diaphram coated with

with TiN or flexible graphite

(Ti*N*, C*)

Experiment/Material Applications:

The specific reason why the Pb-Zn alloy was selected for this ex-

periment was not detailed in available publications.

See also Fredriksson, TEXUS 2.

References/Applicable Publications:

(i) Clancy, P. F., Heide, W., and Langbein, D.: Sounding Rocket

Flight Test of an Acoustic Mixer by Manufacture of a Lead-Zinc

Emulsion Alloy in Microgravity. In Proceedings of the 4th

European Symposium on Material Sciences Under Microgravity,

Madrid, Spain, April 5-8, 1983, ESA SP-191, pp. 99-104. (post-

flight)

17-144



(2) Clancy, P. F. and Heide, W. : Acoustic Mixing of an Immiscible

Alloy (Pb-Zn) in Microgravity. In The Effect of Gravity on the

Solidification of Immiscible Alloys, Proceedings of an

RIT/ESA/SSC Workshop, J_rva, Krog, Sweden, January 18-20, 1984,

pp. 73-77. (post-flight)

(3) Acoustic Mixing. In Summary Review of Sounding Rocket Ex-

periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February 1991, pp. 266-267. (post-

flight)

(4) Solidification of Immiscible Alloys. In Summary Review of

Sounding Rocket Experiments in Fluid Science and Materials

Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-I132, February

1991, pp. 268-269. (post-flight)

Contact(s):

W. Heide or Prof. D. Langbein
Battelle Institut e.V.

Am Romerhof 35

Postfach 90 01 60

D-6000 Frankfurt/Main 90

Germany
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Prlnolpal Investigator(s): Heide, W. (1), Langbein, D. (2)

Co-Investlgator(s): Unknown

Affillation(s): (1,2) Battelle-Institute, Frankfurt, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 7

Launch Date/Expt. Date: May 1983

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 06-5

Builder of Processing Facility: Unknown

Experiment:

Separation of Transparent Liquids

This TEXUS 7 experiment was the second in a series of investiga-

tions designed by Heide and/or Langbein et al. to study the be-

havior of immiscible systems under low-gravity conditions (see

Heide, TEXUS 5). The specific objective of the experiment was to

examine the nucleation, growth, transport, and coalescence of

minority phase droplets during directional cooling of a

transparent, immiscible system.

The TEXUS Experiment Module TEM 06-5 was used for the experiment.

The module contained a 40 mm x 20 mm x i0 mm aluminum block with

two observation windows (the experiment cell). The observation

windows allowed the experiment process to be filmed during the

low-gravity mission. The cell was filled with a liquid consist-

ing of 35% cyclohexane and 65% methanol. Two thermocouples,

one at the top of the cell and one at the bottom of the cell were

used to achieve thermal control of the sample liquid. In addi-

tion, a thermocouple on the left side of the cell and a ther-

mocouple on the right side of the cell were used to monitor the

fluid temperature.

One hour prior to launch, resistance heaters, attached to the top

and bottom plates of the block, heated the sample liquid to 50

°C. (The mixture's critical temperature is 45.6 °C.) Full mixing

of the components resulted. Once low-gravity conditions had been

achieved (approximately 70 seconds after launch), the lower side

of the liquid cell was cooled to i0 °C. (The lower heater was

connected to a cooling plate such that, "...30 [seconds was] suf-

ficient for cooling the bottom of the cell by 40 °C." (i, p. 28))

<Note: It appears that under the chosen thermal conditions, the

liquid mixture does not solidify but a cooling front can be ob-

served.>

17-146



Post-flight examination of the documenting film revealed the

propagation of the cooling front and the growth of the

cyclohexane particles behind the cooling front. (This migration

was referred to as a "fog front" of cyclohexane particles.) Ap-

proximately 30 seconds after cooling was initiated, strong migra-

tion of the cyclohexane droplets towards the cooling front was

observed. Reportedly, the migration of the droplets was caused

by Marangoni convection. The Marangoni convection was attributed

to the thermal and solutal gradients which existed behind the

cooling front. Once the droplets reached the cooling front, the

migration was halted since the liquid above the front was at a

temperature of 50 °C (and thus no thermal gradient existed to

drive the Marangoni convection). It was reported that the

results from this experiment fit well with the theoretical pre-

dictions (see Reference (3) for discussions concerning the

theoretical treatment).

A reference experiment was performed on Earth for comparison.

The fluid behavior of the ground sample was similar to that of

the rocket sample during the first 35 seconds. However, the

cyclohexane drops, now driven by gravity-induced buoyancy forces,

continued to move into the liquid. Once in the liquid, where the

two fluids were still miscible, the droplets shrank and vanished

after a few seconds.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Binary Systems, Model Materials, Transparent Liquids,

Phase Separation, Directional Solidification, Thermal Gradient,

Solutal Gradients, Liquid Mixing, Emulsion, Dispersion,

Liquid/Liquid Dispersion, Liquid/Liquid Interface, Drops, Drop

Coalescence, Drop Migration, Particle Growth, Particle Transport,

Nucleation, Segregation, Buoyancy Effects, Thermocapillary Con-

vection, Buoyancy-Driven Convection, Marangoni Convection, Maran-

goni Movement of Droplets, Solidification Front Physics,

Solid/Liquid Interface

Number of Samples: one

Sample Materials: binary liquid: 35% cyclohexane and 65% methanol
Container Materials: aluminum

(AI*)
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Experlment/Material Applications:

The cyclohexane/methanol mixture used in this experiment repre-

sents a model system of immiscible materials. The liquid is

transparent and permitted visualization of drop movement.

References/Applicable Publications:

(i) Langbein, D. and Heide, W: The Separation of Liquids Due to

Marangoni Convection. Adv. Space Res., Vol. 4, No. 5, 1984, pp.

27-36. (post-flight)

(2) Langbein, D. and Heide, W.: Entmischung von Flussigkeiten

aufgrund yon Grenz-flachenkonvektion. ZFW, Vol. 8, 1984, pp.

192-199. (in German)

(3) Langbein, D.: On the Separation of Alloys Exhibiting a Mis-

cibility Gap. In Proc. Workshop on Effect of Gravity on

Solidification of Immiscible Alloys, Stockholm, January 18-20,

1984, ESA SP-219, March 1984. (theoretical analysis)

(4) Langbein, D. and Heide, W.: Study of Convective Mechanisms

Under Microgravity Conditions. Adv. Space Res., Vol. 6, No. 5,

pp. 5-17, 1986. (TEXUS 7 and 9)

(5) Martinez, I., Haynes, J. M., and Langbein, D.: Fluid Statics

and Capillarity. In Fluid Sciences and Materials Science in

Space, Edited by Walter, H. U., Springer Verlag, 1987, pp. 53-80.

(related topics)

(6) Separation of Transport Fluids Due to Marangoni Convection.

In Summary Review of Sounding Rocket Experiments in Fluid Science

and Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-

1132, February 1991, pp. 270-271. (post-flight)

Contact(s):

W. Heide or Prof. D. Langbein

Battelle Institut e.V.

Am Romerhof 35

Postfach 90 01 60

D-6000 Frankfurt/Main 90

Germany
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Principal Investlgator(s): Heide, W. (1), Langbein, D. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1,2) Battelle-Institute, Frankfurt, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 8

Launch Date/Expt. Date: May 1983

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 02-1 (furnace

with acoustic mixer)

Builder of Processing Facility: Acoustic Mixer: Battelle In-

stitute, Frankfurt, Germany; Furnace: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Germany

Experiment:

Acoustic Mixinq/Solidification of Immiscible Alloys

This TEXUS 8 experiment was the third in a series of investiga-

tions designed by Heide and/or Langbein et al. to study the be-

havior of immiscible systems under low-gravity conditions (see

Heide, TEXUS 5, TEXUS 7). The major objective of the TEXUS 8 ex-

periment was the same as that for the earlier TEXUS 5 experiment:

to obtain a fine dispersion in an immiscible material system by

acoustic mixing. In contrast to the TEXUS 5 experiment, the

TEXUS 8 experiment employed an alloy which had a critical con-

centration of the minority component.

Prior to the mission, a Zn-15 wt.% Pb sample was prepared. The

higher Pb content (higher than the TEXUS 5 content) was used be-

cause (i) solidifying a Zn-15 wt.% Pb alloy on Earth is

problematic, (2) such an alloy is more interesting from a techni-

cal point of view, and (3) an alloy with this large of a volume

percent of minority phase is likely to provide information con-

cerning active segregation mechanisms.

The TEXUS Experiment Module TEM 02-1, equipped with an acoustic

mixer, was used for the study. The experimental setup and proce-

dure was the same as that described under Heide, TEXUS 5.

Post-flight examination of the low-gravity sample indicated that

the section processed with acoustic mixing contained Pb particles

with diameters of up to 50 microns. When the acoustic mixer was

switched off, the Pb particle size increased to between 200 and

300 microns. In a similarly processed ground-based sample, the

particle size increased from 120 to 150 microns for the respec-

tive sections. It was also reported that, for both l-g and low-g

samples, the Pb volume content in the sections solidified with

acoustic mixing was lower than the initial lead content.
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"It is clear from these results that for the case of an immis-

cible alloy such as Pb-Zn with a critical concentration of the

minor component (Pb)... [that]... in the absence of mixing, rapid

and extreme coagulation occurs. In this case [acoustic] mixing

can be used in microgravity conditions to produce a fine disper-

sion with results better than those achievable on the ground even

with mixing and is a necessary technique to prevent rapid

coagulation of a critical composition in microgravity." (i, p.

77)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Phase Separation, Melt and

Solidification, Acoustic Mixing, Sedimentation, Segregation,

Buoyancy Effects, Separation of Components, Minority Phase,

Liquid/Liquid Interface, Liquid/Liquid Dispersion, Homogeneous

Dispersion, Stability of Dispersions, Emulsion, Coagulation, Par-

ticle Size Distribution, Particle Growth, Solid/Liquid Interface,
Coated Surfaces

Number of Samples: one

Sample Materials: immiscible alloy: Zn-15 wt.% Pb

(Zn*Pb*)

Container Materials: See Heide, TEXUS 5

Experiment/Material Applications:

See Experiment summary (above).

See also Fredriksson, TEXUS 2, "Segregation Phenomena in Immis-

cible Alloys: Zn-Bi" (this chapter).

References/Applicable Publications:

(1) Clancy, P. F. and Heide, W. : Acoustic Mixing of an Immiscible

Alloy (Pb-Zn) in Microgravity. In The Effect of Gravity on the

Solidification of Immiscible Alloys, Proceedings of an

RIT/ESA/SSC Workshop, J_rva Krog, Sweden, January 18-20, 1984,

pp. 73-77. (post-flight; discusses TEXUS 5 and TEXUS 8

experiments)
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(2) Clancy, P. F., Heide, W., and Langbein, D.: Sounding-Rocket

Flight Test of an Acoustic Mixer by Manufacture of a Lead-Zinc

Emulsion Alloy in Microgravity. In Proceedings of the 4th

European Symposium on Materials Sciences under Microgravity,

Madrid, Spain, April 5-8, 1983, pp. 99-104. (preflight; TEXUS 5

results and justification for TEXUS 8 sample material)

(3) Solidification of Immiscible Alloys. In Summary Review of

Sounding Rocket Experiments in Fluid Science and Materials

Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-I132, February

1991, pp. 268-269. (post-flight)

Contact(s):

W. Heide or Prof. D. Langbein

Battelle Institut e.V.

Am Romerhof 35

Postfach 90 01 60

D-6000 Frankfurt/Main 90

Germany
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Principal Investigator(s): Heide, W. (I), Langbein, D. (2)

Co-Investlgator(s): Unknown

Affiliation(s): (1,2) Battelle-Institute, Frankfurt, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 9

Launch Date/Expt. Date: May 1984

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 06-5

Builder of Processing Facility: Unknown

Experiment:

Separation of Transparent Liquids

This TEXUS 9 experiment was the fourth in a series of investiga-

tions designed by Heide and/or Langbein et al. to study the be-

havior of immiscible systems under low-gravity conditions (see

Heide, TEXUS 5, TEXUS 7, TEXUS 8). The specific objectives of

the experiment were to (i) observe the nucleation, growth, and

Marangoni migration of minority phase droplets during directional

solidification of a transparent, immiscible system and (2) inves-

tigate the effects of a moving solidification front on the Maran-

goni migration.

The experiment apparatus and procedure were essentially the same

as those described under Heide, TEXUS 7. The major difference

between the two flight experiments was that TEXUS 9 (i) employed

a 5 wt.% methanol/95 wt.% cyclohexane mixture and (2) this mix-

ture was sufficiently cooled to create a solidification front.

(The solidification temperature of cyclohexane is +6 °C.)

Prior to launch, the experiment cell was heated to 50 °C (well

above the liquid phase miscibility gap of this material system).

Once low-gravity conditions had been achieved, the bottom plate

of the experiment cell was cooled to -5 °C creating a solidifica-

tion front. The experiment was recorded with a 16 mm cine

camera.

Post-flight analysis of the documenting film revealed that the

initial behavior of the TEXUS 9 system was similar to the TEXUS 7

experiment: "...there is the penetration of the cooling and fog

front. However, about i0 s after... [the cool_ng is initiated] a

second, darker fog front moves upwards. It is faster than the

first one and passes it after about 18 s. It turns out to be a

front of methanol droplets, which are undergoing collective

Marangoni migration. Again, after about 30 s larger methanol

droplets migrate from the bottom to the cooling front .... After

36 s, when the bottom of the cell has reached 6 °C, i.e. when
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solidification of cyclohexane starts, the distribution of the

methanol droplets becomes more uniform, their average size

decreases. The solidification front hinders a preferred nuclea-

tion at bottom roughness." (2, p. 9)

When the TEXUS 9 results were compared to those from TEXUS 7, it

was reported that coagulation of methanol droplets in a

cyclohexane matrix (TEXUS 9) was much faster than coagulation of

cyclohexane droplets in a methanol matrix (TEXUS 7). This result

occurred despite the fact that both systems have the same in-

crease in interface energy. It was also reported that convective

rolls formed during the TEXUS 9 experiment after about 3 minutes.
These rolls "...can be ascribed to a correlation between the

growth front of cyclohexane and the nucleation and Marangoni

migration of methanol droplets." (2, p. 9) <Note: No mention of

convection rolls were reported for the TEXUS 7 experiment.>

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Binary Systems, Phase Separation, Model Materials,

Transparent Liquids, Directional Solidification, Thermal

Gradient, Solutal Gradients, Minority Phase, Emulsion, Disper-

sion, Liquid/Liquid Dispersion, Liquid/Liquid Interface, Drops,

Coagulation, Drop Migration, Particle Growth, Particle Transport,

Droplet Size, Particle Size Distribution, Nucleation, Segrega-

tion, Buoyancy Effects, Marangoni Convection, Marangoni Movement

of Droplets, Interfacial Energy, Solidification Front Physics,

Solid/Liquid Interface

Number of samples: one

Sample Materials: binary liquid: 95 wt.% cyclohexane and 5 wt.%

methanol

Container Materials: aluminum

(AI*)

Experiment/Material Applications:

See Heide, TEXUS 7.
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References/Applic_le Publications:

(i) Langbein, D. and Heide, W.: The Separation of Liquids Due to

Marangoni Convection. Advances in Space Research, Vol. 4, Number

5, 1984, pp. 27-36. (post-flight; discusses results from TEXUS 7

and TEXUS 9 experiments)

(2) Langbein, D. and Heide, W.: Study of Convective Mechanisms

Under Microgravity Conditions. Adv. Space Res., Vol. 6, No. 5,

1986, pp. 5-17. (post-flight TEXUS 7, 9 and DI)

(3) Marangoni Transport of Droplets at a Solidification Front.

In Summary Review of Sounding Rocket Experiments in Fluid Science

and Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-

1132, February 1991, pp. 272-273. (post-flight)

Contact(s]:

W. Heide or Prof. D. Langbein

Battelle Institut e.V.

Am Romerhof 35

Postfach 90 01 60

D-6000 Frankfurt/Main 90

Germany
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Principal Investigator(s): Laher, R. R. (1)

Co-Investigator(s): Yoel, D. (Payload Manager, Lead Engineer)

(2), Moore, R. G. (Contributor/Customer) (3)

Affiliation(s): (i) During STS-004: Utah State University, Logan,

Utah, Currently: R & D Associates, Marina del Rey, California;

(2) During STS-004: Utah State University, Logan, Utah,

Currently: Heatherington Inc., Ventura, California; (3) During

STS-004: Morton Thiokol, Brigham City, Utah, Currently: Utah

State University Space Dynamics Laboratory, Logan, Utah

Experiment Origin: USA

Mission: STS Launch #4, STS-004 (STS OFT-4, Columbia)

Launch Date/Expt. Date: June 1982

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment

NASA Get Away Special (GAS) Canister G-001

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-001: Utah State University, Logan,

Utah/R. Gilbert Moore

Processing Facility: Hot wire cell/pump-heater assembly

Builder of Processing Facility: Designed by: Principal Inves-

tigator R. Laher; machined off-campus, Logan Utah

Experiment:

Thermal Conductivity of a Binary Heterogeneous Mixture

(Experiment Number 9-P)

On Earth, accurate measurements of the thermal conductivity of an

immiscible liquid are hindered (in part) by (i) fluid heat losses

attributed to convective flow and (2) separation of differing

density constituents of the mixture. In a low-gravity environ-

ment, such heat losses and fluid demixing should be reduced al-

lowing a more accurate measurement of the thermal parameter.

This experiment was one of ten investigations housed within the

G-001 Get Away Special (GAS) canister during STS-004. (Four

other experiments (of the ten) were applicable to this data base

(see Alford, STS-004 (Chapter 18); Dalley, STS-004 (Chapter 5);

Elwell, STS-004 (Chapter 12); Thomas, T. L., STS-004 (Chapter

14)).) The specific objective of the experiment was to measure

the thermal conductivity of a binary heterogeneous mixture.

The experimental setup included (i) an emulsification device to

mix the test liquids (crude oil and water) and (2) a hot wire

liquid receiver cell (a hollow cylinder with a nichrome heater

positioned along its long axis).
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The expected, low-gravity operational scenario consisted of (i)
emulsifying the oil and water components, (2) pumping the emul-

sified mixture into the hot wire cell, (3) applying a voltage

across the heater wire to induce a radial thermal gradient in the

fluid, (4) allowing a sufficient amount of time for the thermal

field to achieve a steady state, and (5) measuring the tempera-
ture distribution.

Reportedly, the resultant thermal data was to be used to calcu-

late the thermal conductivity of the mixture. However, post-

flight analysis of the experimental payload revealed that the

water in the experiment froze before the payload could be ac-

tivated. Consequently, the experiment was aborted. The prin-

cipal investigator commented that perhaps the most important

results of all were (i) the experience and knowledge acquired,

and (2) the personal enrichment from working with many dedicated

and talented individuals involved in bringing about payload G-
001.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Phase Separation, Binary Systems, Thermal Conductivity

Measurements, Heat Transfer, Thermal Gradient, Thermal Distribu-

tion, Buoyancy-Driven Convection, Separation of Components, Den-

sity Difference, Liquid Mixing, Emulsion, Dispersion,

Liquid/Liquid Dispersion, Liquid Transfer, Electric Field, Ther-

mal Environment More Extreme Than Predicted, Freezing, Hot-Wire

Technique, Contained Fluids, Liquid Reservoir

Number of Samples: one

Sample Materials: mixture of Louisiana crude oil & water
Container Materials: aluminum

(AI*)

Experiment/Material Applications:

Data resulting from research such as this could be used to

validate existing theoretical treatments of twhe thermal conduc-

tivity of a binary heterogeneous mixture.
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References/Applicable Publications:
(i) Yoel, D., Walker, S., Elwell, J. and Moore, G.: The First

Getaway Special - How it was Done. Spaceworld, May 1983, pp. 9-

16. (post-flight)

(2) STS-4 Fourth Space Shuttle Mission, NASA Press Kit, June

1982, p. 62. (preflight)

(3) Yoel, D. W.: Payload Integration of a Get Away Special

Canister. American Institute of Aeronautics and Astronautics,

Annual Meeting and Technical Display on Frontiers of Achievement,

Long Beach, California, May 12-14, 1981, 5 pp. (preflight)

(4) The STS-4 Getaway Special.

1982. (preflight)

NASA Report PB82-I0223, May 20,

(5) Cargo Systems Manual: GAS STS-4, May 20, 1988, JSC-17645, pp.

4-1 - 4-4. (preflight; very short description)

(6) Overbye, D.: The Getaway Kids Shuttle Into History.

cover, September 1982. (post-flight)

Dis-

(7) Yoel, D. W.: Analysis of the First Getaway Special Space

Shuttle Payload. Thesis for M.S. in Physics, Utah State Univer-

sity, Logan, Utah, 1984.

(8) Moore, R. G.: Educational Implications of Getaway Special

Payload Number One. IAF-81-293, XXXIInd International Astronauti-

cal Federation Congress, Rome, September 6, 1981.

(9) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

(i0) Input received from Principal Investigator R. Laher, August

1989.

(ii) Transcripts of press conference at NASA MSFC with G-001 stu-

dent experimenters and sponsors, NASA, May 20, 1982.

(12) "Get Away Special," NASA News, NASA MSFC, June 7, 1982.
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Contact(s):
Russ R. Laher

R & D Associates

P.O. Box 9695

Marina del Rey, CA
90295

R. Gil Moore

Space Dynamics Laboratory

Utah State University

Logan, UT 84322-4140

David Yoel

Heatherington Inc.

4171 Market Street

Suite C-I

Ventura, CA 93003
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Principal Investigator(s): Otto, G. H. (1)
Co-Investigator(s): None
Affiliation(s): (1) Deutsche Forschungs-und Versuchsanstalt f_r

Luft-und Raumfahrt (DFVLR)-Cologne, Germany <Note: The DFVLR is

now called the Deutsche Forschungsanstalt fur Luft-und Raumfahrt

(DLR) >

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #5, STS-005 (STS 31-A, Columbia)

Launch Date/Expt. Date: November 1982

Launched From: NASA Kennedy Space Center, Florida

Payload Type: West German Get Away Special (GAS) MAUS Canister

DG-205 (Also designated as NASA Get Away Special (GAS) Canister

G-026)

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of DG-205/G-026: The German Ministry of

Research and Technology (BMFT)/Messerschmitt-Boelkow-Blohm (MBB-

ERNO)

Processing Facility: Radiation transparent thermostat (oven) with

X-ray unit. Variable cooling rates of the sample were possible
via the use of an air fan.

Builder of Processing Facility: DFVLR, Institute of Space Simula-

tion, Cologne, Germany

Experiment:

Stability of Metallic Dispersions (DG-205)

Above a certain temperature (the consulate temperature), a

specific combination of gallium and mercury illustrates

solubility in the liquid state. When such a Hg-Ga system is

processed on Earth, the molten mercury rapidly separates from the

molten gallium because of a large density difference between the

alloying components. In contrast, when such a system is

processed in space, there is a reduction of the gravity-driven

forces (sedimentation and buoyancy) which separate the metals.

Thus, it was anticipated that in a low-gravity environment (i) a

more homogeneous dispersion of the mercury droplets in the gal-

lium could be attained and (2) gravity-independent forces respon-

sible for the dispersion could be more closely investigated. It

was also surmised that if X-rays of the sample could be used to

record the appearance of the liquid metal shortly before or

during solidification, the physical processes governing the

resultant product might be more clearly defined.

This STS-005 Get Away Special (GAS) metals-mixing experiment was

the first in a series of investigations designed by Otto to study

the stability of metallic dispersions under low-gravity condi-

tions. The major objective of the investigation was to process a
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Ga-Hg sample in a transparent heater while simultaneously

penetrating the liquid alloy with periodic X-rays. Such X-ray

radiography would provide a real-time examination of the metal

during different stages of the experiment. The processing/X-ray

examination would permit the investigation of (I) the dissolution

process of the Ga-Hg system above the consulate temperature and

(2) the time-dependent stability of the dispersion (composed of

mercury droplets in gallium).

<Note: Reportedly, another major objective of the experiment was

testing the "function" of the MAUS standard system. Although

this objective was not further explained, it is thought that

testing the function may have implied determining the success and

practicality of the West German Get Away Special containers.

(Details of the MAUS system can be located in Reference (5).)>

During the mission, the single sample (80 vol.% Ga - 20 vol.% Hg)

was to be processed. Because the sample "...could be recycled

into its starting conditions by repeated thermal treatment...,"

(i, p. 104) the thermal cycling was to be performed during the 3

days of planned experiment time.

Post-flight analysis of the payload indicated that the experiment

was not activated. Reportedly, "A failure analysis yielded that

a leak in a silver-zinc electronic battery had developed during

the several weeks of waiting time on ground. Because of no volt-

age conditions the electronics of the standard system could not

be activated by the "on" signal given by the crew." (i, p. 104)

The sample payload was reflown on the NASA structure OSTA-2

during the space shuttle STS-007 mission (see Otto, STS-007).

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metals, Metallic Matrix, Phase Separation,

Melt and Solidification, Drops, Drop Formation, Particle Growth,

Nucleation, Dispersion, Dispersion Alloys, Dispersion Strengthen-

ing, Stability of Dispersions, Metallic Dispersion, Liquid/Liquid

Dispersion, Homogeneous Dispersion, Liquid/Liquid Interface, Den-

sity Difference, Separation of Components, Sedimentation,

Buoyancy Effects, Dissolution, Precipitation of Second Phase,

Solid/Liquid Interface, X-Ray of Liquid Metal in Space, Air Fan,

Sample Not Processed As Planned, Battery Drainr Battery Leakage

Number of Samples: one

Sample Materials: 80 vol.% gallium - 20 vol.% mercury

(Ga*Hg*)
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Container Materials: Teflon TM

Experiment/Material Applications:

The lack of direct observation of the physical processes occur-

ring in liquid metals, either just before or during solidifica-

tion, hampers the study of physical phenomena within the system.

Post examination of materials requires interpretation of the

processes which occurred during the solidification, which is dif-

ficult since details of these intermediate stages are missing.

The use of X-rays would allow real-time observation of these

processes.

Understanding the precipitation process (including nucleation,

growth and ripening) will lead to the improvement of dispersion

strengthened materials.

References/Applicable Publications:

(i) Otto, G. H. and Baum, D. Material Sciences Experiments Under

Microgravity Conditions With M*A*U*S. In NASA Goddard Space

Flight Center's 1985 Get Away Special Experimenter's Symposium,

October 8-9, 1985, pp. 101-108, NASA CP-2401. (post-flight)

(2) Cause of German Payload Failure Determined. Aviation Week

and Space Technology, April Ii, 1983. (post-flight)

(3) Moser, J. F.: Cargo Systems Manual: GAS STS-5.

17645 September 12, 1982, p. 4-1. (preflight)

NASA JSC-

(4) Otto, G. H.: The Behaviour of a Metallic Dispersion Under

Microgravity Conditions. Proceedings of the 4th European Sym-

posium on Materials Sciences Under Microgravity, Madrid, Spain,

April 5-8, 1983, ESA SP-191. (preflight)

(5) Baum, D., Otto, P., and Vits, P.: MAUS-A Flight Opportunity

for Automated Experiments Under Microgravity Conditions. Acta

Astronautica, Vol. ii, pp. 239-245, 1984.

(6) Baum, D., Stolze, H., and Vits, P.:

Payloads. IAF Paper 84-137, 1984.

Flight Data from MAUS

(7) Otto, G. H.: MAUS fur Legierungen in der Schwerelosigkeit.

Umschau, Vol. 82, p. 703, 1982. (preflight)
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(8) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report # EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(9) Input received from Principal Investigator G. H. Otto, July
1989 and August 1993.

Contact (s) :
Dr. G_nther H. Otto

DLR

Linder H6he

D-51147 K61n

Germany
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Principal Investigator(s): Otto, G. H. (i)

Co-Investigator(s): None

Affiliatlon(s): (1) Deutsche Forschungs-und Versuchsanstalt f_r

Luft-und Raumfahrt (DFVLR)-Cologne, Germany <Note: The DFVLR is

now called the Deutsche Forschungsanstalt f_r Luft-und Raumfahrt

(DI.,R)>

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: West German Get Away Special (GAS) MAUS Canisters

DG-205I and DG-205II

Volume of Canisters: 5.0 cubic feet

Location of Canisters: STS Payload Bay (carried on the Office

of Space and Terrestrial Applications (OSTA-2) pallet (a NASA

experiment carrier))

Primary Developer/Sponsor of DG-205I, DG-205II: The German Minis-

try for Research and Technology (BMFT)/Messerschmitt-Boelkow-

Blohm (MBB-ERNO)

Processing Facility: Radiation transparent thermostat (oven) with

X-ray unit. Variable cooling rates of the sample were obtained

via the use of an air fan. (This facility was similar to the

processing facility configured on MAUS DG-205, STS-005, with no

upgrades.)

Builder of Processing Facility: DFVLR, Institute of Space Simula-

tion, Cologne, Germany

Experiment:

The Stability of Metallic Dispersions (DG-205I and DG-205II)

This STS-007 MAUS Get Away Special (GAS) metals-mixing experiment

was the second in a series of investigations designed by Otto to

study the stability of metallic dispersions under low-gravity

conditions (see Otto, STS-005).

Two MAUS canisters onboard STS-007 (DG-205I and DG-205II) were

dedicated to the dispersion experiment. Both of the canisters

were mounted on the OSTA-2 carrier in the shuttle cargo bay.

Reportedly, DG-205I and DG-205II had similar hardware configura-

tions, but sample conditions and time-temperature profiles dif-

fered. For example, the Principal investigator noted that (i)

the DG-205I processed a 80 vol.% Ga, 20 vol.% Hg sample, and that

(2) the DG-205II processed a 83.8 vol.% Ga, 16.2 vol.% Hg sample.

The STS-007 experiment was similar to the earlier STS-005 inves-

tigation. The major objective of the investigation remained the

same: to process a Ga-Hg sample in a transparent heater while

simultaneously penetrating the liquid alloy with periodic X-rays.
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Such X-ray radiography could provide a real-time examination of

the metallic melt during different stages of the experiment. The

processing/X-ray examination would permit the investigation of

(i) the dissolution process of the Ga-Hg system above the consu-

late temperature and (2) the time-dependent stability of the dis-

persion (composed of mercury droplets in gallium).

Because a battery leak occurred in the previous STS-005 MAUS

payload, the cause of the leak, a simple O-ring seal, was

"corrected" for the STS-007 flight of the DG-205 canister.

During the mission, a single sample was processed in each of the

MAUS canisters with three heating and cooling cycles. A reser-

voir, configured to compensate for volume expansion of the

sample, was implemented to eliminate material free surfaces.

A document published prior to the launch of the experiment

detailed an expected experiment cycle. First, the samples were

to be heated to a temperature above the miscibility gap (220 °C)
and homogenized. Second, the samples were to be cooled into the

miscibility gap (but not solidified) with a prescribed cooling

rate. Third, the dispersion was to be held at a constant tem-

perature. Fourth, because the samples "...could be recycled

into... [their] starting conditions by repeated thermal treat-

ment..." (4, p. 104) (by heating the sample to its homogenized

state above the miscibility gap (220 °C)), the thermal cycling

was to be repeated during the 3 days of planned experiment time.

During the mission, "Different cooling rates of 30, i0 and 2

K/min were achieved by forced cooling with a fan, natural and

programmed cooling respectively. In the actual experiment the

cycle containing natural cooling was lost because of temporary

problems with the film transport." (2, p. 44) The differing

cooling rates permitted an examination of rate-dependent

processes (precipitation and growth). The temperature hold at

the miscibility gap permitted an examination of isothermal

processes (droplet motion by residual gravity or droplet growth
via Ostwald Ripening).

<Note: Although it is clear from Reference (3) that DG-205I was

cooled into the miscibility gap at a rate of 30 K/min and that

DG-205II was cooled into the miscibility gap at a rate of 1.7

K/min, details/results of other cooling cycles in each canister

were not presented (although references indicated that four ex-

periment cycles (total) were realized). Thus, it appears from

Reference (2) that these other two cooling rates may have been

related to the lost data referred to above (natural cooling i0
K/min).>
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Post-flight analysis of the payload indicated that the experiment
was successful and "...yielded the first X-ray photos from a
metallic dispersion cooling a homogeneous solution into the mis-
cibility gap." (4, p. 104)

The following observations were reported:

"- [Homogenization] appears to be completed after 4 hours at 190
°C. This can be concluded from the constant grey [sic] scale
value of the sample when measuring across the X-ray film. In the
[Earth] laboratory at least 8 hours are needed for worst case
conditions when the heavier mercury is on the bottom of the con-
tainer.

[<Note: Reference (3) indicated that in DG-205I, the homogenized
state was achieved after a diffusion time of 24 hours at 190 °C
when a cooling rate of 30 K/min was employed. Further, Reference
(5) indicated that low-g homogenizations of gallium and mercury
by diffusion (cooling rate not specified) were achieved in less
than 1 hour. The Principal Investigator addressed these
"inconsistencies" in reporting by explaining that "...at the time
when the experiment was designed the... [homogenization] dura-
tions were very much in question because the convective contribu-
tion to the diffusion coefficient in the liquid state was not
known. Therefore, a conservative... [homogenization] time of 24
hours [prior to cooling] was chosen in order to be on the safe
side. After the experiment it turned out that this time was suf-
ficient. However, depending on the dispersed state of the
sample... [homogenization] was achieved in less than 1 hour.>]

"- When cooling the sample in to the miscibility gap with a rate
of 30 K/min the precipitation of the Hg-droplets occurs rapidly.
However, no finely dispersed state with a particle size of about
0.3 diameter ([the] resolution limit of the X-ray photos) can be
observed. Hg-droplets seem to be generated by heterogeneous
nucleation at the gallium surface. Droplets seem to be station-
ary once they achieve the visibility limit and do not show any
blurring movement despite the exposure time of 20 s.

"- Supercooling of the melt appears small and if present should
be less than 20 °C.

"- When cooling into the gap the growth of precipitated droplets
[in the low-g environment] is rather fast .... Within one minute
(30 K into the gap) the particles have already grown to an
average diameter of 0.8 mm. Anticipating growth by diffusion
only, the diameters increase too fast by at least a factor of
five. Other processes like convective material transport or
coalescence are likely to contribute to growth ....
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[<Note: Reportedly, concentration gradients at the interface were
sources of the convective material transport (see Reference
(i0)). Acceleration levels on the shuttle were mentioned
below.>]

"The housekeeping systems also provided information about the
payload from which the acceleration data taken over a period of
three days are the most interesting .... Crew activities and ac-

tivation of the robotic arm can be seen clearly on the record.

It should be stated that the g-sensitive runs of the X-ray ex-

periment were programmed to happen during the sleeping time of

the crew." (4, pp. 104-105)

"- Movement of the droplets due to residual acceleration over a

period of two hours cannot be observed. Therefore, it is con-

cluded that the mercury precipitated or rapidly migrated to

the... [gallium/teflon(container) interface] of the sample where

it became stationary." (2, p. 45)

It was concluded that a homogeneous dispersion of a Hg-rich phase

was not achieved during the experiment. Instead, there was a

tendency for the mercury to coagulate into droplets.

"In the sample that was cooled with a fast rate the process of

precipitation and nucleation of droplets occurred very quickly.

In the photographs one sees the sudden appearance of droplets,

heterogeneously distributed in location as well as size. Minimum

size detectable is 0,2 mm diameter. The size of the droplet

grows with further cooling. The rate of growth of the droplets

is faster than one would expect by diffusion alone. Supposedly

convection in microgravity has played a part.

"Cooling into the miscibility gap with the considerably slower

rate of 1,7 K/min the growth of the precipitated droplets is

slower and can be explained by the amount of mercury being avail-

able. This amount is governed by the phase diagram and is ac-

tually less than could be consumed by a purely diffusive

process." (3, p. 388)

Many other interesting conclusions are detailed in References (3)

and (i0).
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metals, Metallic Matrix, Phase Separation,

Melt and Solidification, Drops, Drop Formation, Drop Migration,

Drop Coalescence, Droplet Size, Particle Growth, Nucleation,

Heterogeneous Nucleation, Dispersion, Dispersion Alloys, Disper-

sion Strengthening, Stability of Dispersions, Metallic Disper-

sion, Liquid/Liquid Dispersion, Homogeneous Dispersion,

Liquid/Liquid Interface, Ostwald Ripening, Coarsening, Coagula-

tion, Density Difference, Separation of Components, Sedimenta-

tion, Stokes Sedimentation, Buoyancy Effects, Dissolution,

Precipitation of Second Phase, Wetting, Solutal Gradients, Maran-

goni Convection, Surface Tension-Driven Convection, Diffusion,

Diffusive Mass Transfer, Solid/Liquid Interface, Solidification

Rate, Radiative Cooling, Air Fan, Supercooling, Volume Expansion,

Volume Compensation, Free Surface Elimination, X-Ray of Liquid

Metal in Space, Acceleration Effects, Acceleration Measurement

Number of Samples: Two samples (one on DG-205I and one on DG-

205II). Multiple runs were performed on each of these samples.

Sample Materials: DG-205I: 80 vol.% gallium - 20 vol.% mercury;

DG-205II: 83.3 vol.% gallium - 16.2 vol.% mercury

(Ga*Hg*)
Container Materials: Teflon TM

Experiment/Material Applications:

The processes of droplet nucleation, growth and wetting in low-

gravity have to be understood before dispersion-strengthened al-

loys can be prepared. Coalescence of liquid droplets will lead

to fast coarsening of samples.

See also Otto, STS-005.

References/Applicable Publicationsz

(I) Otto, G. H.: The Behavior Of a Metallic Dispersion Under

Microgravity Conditions. In ESA 4th European Symposium On

Material Sciences Under Microgravity, Madrid, Spain, April 5-8,

1983, Publication ESA SP-191, pp. 63-69. (preflight)

(2) Otto, G. H.: First Results of a MAUS Experiment To Inves-

tigate the Stability of a Metallic Dispersion. Workshop on Ef-

fect of Gravity on Solidification of Immiscible Alloys, Stock-

holm, January 18-20, 1984, ESA SP-219, pp. 43-46. (post-flight)

17-167



(3) Otto, G. H.: Stability of Metallic Dispersions. Proceedings
of the 5th European Symposium on Material Science under
Microgravity, Schloss-Elmau, November 5-7, 1984, pp. 379-388, ESA
SP-222. (post-flight)

(4) Otto, G. H. and Baum D.: Materials Sciences Experiments Under

Microgravity Conditions with M*A*U*S. In NASA Goddard Space

Flight Center, The 1985 Get Away Special Experimenter's Sym-

posium, pp. 101-108. (post-flight)

(5) Otto, G. H.: Experimental Results from Automated MAUS

Payloads. IAF Paper 88-351 (1988). (post-flight)

(6) Otto, G. H.: MAUS-Nuklasten fur Space Shuttle.

83, pp. 394-395. (1983) (preflight)

Umschau, Vol.

(7) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(8) Input received from Principal Investigator G. H. Otto, July

1989 and August 1993.

(9) NASA STS-007 Press Kit, p. 50. (preflight)

(i0) Otto, G. H. and Frohberg, G.: Droplet Dissolution Kinetics

in the Miscibility Ga of Ga-Hg: Comparison of Microgravity

Results with a Computer Simulation. In Proceedings of the 6th

European Symposium on Material Sciences Under Microgravity Condi-

tions, Bordeaux, France, December 2-5, 1986, ESA SP-256, February

1987, pp. 335-360. (post-flight)

(ii) Baum, D., Stolze, H., and Vits, P.: First Flight Data from

MAUS Payloads on STS 7 and STS ii. 35th Congress of the Interna-

tional Astronautical Federation, October 7-13, 1984, Lausanne,

Switzerland, ii pp. (post-flight)

(12) Baum, D., Otto, G., and Vits, P.: MAUS-A Flight Opportunity

for Automated Experiments Under Microgravity Conditions. Acta

Astronautica, Vol. ii, No. 3-4, pp. 239-245, 1984. (no discus-

sion of experiment results)

Contact (s} •

Dr. GUnther H. Otto

DLR

Linder Hohe

D-51147 K61n

Germany
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Principal Investigator(s): Caton, P. D. (i), Clyne, D. (2)

Co-Investigator(s): None

Affiliation(s) : (1) Fulmer Research Laboratories, Slough, Stoke

Pages, Great Britain; (2) During TEXUS 7: Department of Metal-

lurgy and Materials Technology, University of Surrey, Great

Britain, Currently: Department of Materials Science & Metallurgy,

University of Cambridge, Cambridge, England

Experiment Origin: Great Britain

Mission: TEXUS 7

Launch Date/Expt. Date: May 1983

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Three mirror furnaces (designated as MF 4,

MF 5, and MF 6) located in the Swedish TEXUS Experiment Module

Builder of Processing Facility: Unknown, Probably the Swedish

Space Corporation, Solna, Sweden

Experiment:

Solidification of AI-Pb Alloys Under Microgravity

During the solidification of metallic alloys on Earth (i) the

stability of an emulsion is hampered by gravity-induced sedimen-

tation effects and (2) the role of surface energy on agglomera-

tion and solidification front inclusion is masked by the over-

whelming gravity forces.

This TEXUS 7 experiment was the first in a series of investiga-

tions designed by Caton and/or Goodhew et al. to study the

stability of a metallic dispersion. The specific objective of

the experiment was to study various dispersions of lead in liquid

aluminum and to attempt to (i) increase emulsion stability and

(2) determine the importance of surface energy in the system.

Prior to the mission, "...three aluminum samples containing lead

in the range 6-8 wt.% (monotectic temperature = 660 °C) were

prepared..." (3, p. 264) such that they would exhibit a fine dis-

persion when processed.

During the low-gravity phase of the rocket, the samples were

melted in three mirror furnaces. Reportedly, "Sample 1 was

heated up to 950 °C for 64 s; sample 2 was heated up to 950 °C

for 64 s and then maintained at 750°C for 115 s; sample 3 was

heated up to 750 °C for 64 s. All samples were rapidly

solidified before the end of the microgravity period." (3, p.

264)
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Post-flight, it was determined that:

(i) in flight sample 1 "...a fine dispersion had been produced
and retained .... A denuded region on the surface of the specimen
was observed, believed to result from variations in solidifica-
tion front speed." (I, p. 83)

(2) "Sample 2 showed an unexpected segregation of large droplets
in the last frozen liquid." (3, p. 264) and

(3) "Sample 3 also showed particles pushed in the direction of
solidification but with an unexpected rim of larger droplets
within the denuded region on the surface." (3, p. 264)

(4) "In view of the low solubility of Pb in A1 at the monotectic

point (1.5 wt%), and the rapid solidification of the samples, it

was possible to... [analyze] the stability of the dispersion and

its interaction with the solidification front as it swept

through." (3, p. 264) <Note: No further discussion of this

analysis was presented.>

It was further reported that similarly processed ground-based

samples exhibited "...the expected agglomerations of lead in the

direction of gravity." (3, p. 264)

No further information concerning this experiment could be lo-
cated at this time.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Monotectic Compositions, Metals, Metallic

Matrix, Dispersion Alloys, Dispersion Strengthening, Phase

Separation, Melt and Solidification, Drops, Drop Formation,

Droplet Agglomeration, Dispersion, Stability of Dispersions,

Metallic Dispersion, Particle Dispersion, Droplet Dispersion,

Liquid/Liquid Dispersion, Homogeneous Dispersion, Emulsion,

Liquid/Liquid Interface, Density Difference, Separation of Com-

ponents, Segregation, Sedimentation, Stokes Sedimentation,

Buoyancy Effects, Surface Tension, Surface Energy, Interface

Physics, Solid/Liquid Interface, Solidification Rate, Inclusion

and/or Rejection of Particles, Solidification Front Physics, Su-
perconductivity
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Number of Samples: three

Materials: aluminum samples containing lead in the range 6-8 wt%.

(AI*Pb*)

Container Materials: unknown, appears to have been copper

(cu*)

Experiment/Material Applications:

See Caton, Spacelab 1 (this chapter).

References/Applicable Publlcations:

(I) Hopkins, W. G.: Solidification of AI-Pb Alloys Under

Microgravity in Texus-7, Preliminary Report. In ESA The Effect

of Gravity on Immiscible Alloys, 1984, pp. 83-86. (post-flight)

(2) Input received from Experiment Investigator, November 1989.

(3) Immiscible Alloy System AI-Pb. In Summary Review of Sound-

ing Rocket Experiments in Fluid Science and Materials Sciences,

ESA SP-I132, February 1991, pp. 264-265. (post-flight)

(4) Input received from Experiment Investigator T. W. Clyne, July

1993.

Contact(s):

Dr. P. Caton

Fulmer Research Laboratories

Hollybrush Hill

Stoke Pages

GB-Slough, Berks SL2 4QD
Great Britain

T. W. Clyne

University of Cambridge

Department of Materials Science & Metallurgy

Pembroke Street, Cambridge

CB2 3QZ

England
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Principal Investigator(s): Caton, P. D. (i), Hopkins, W. G. (2)
Co-Investigator(s): None

Affiliation(s): (1,2) Fulmer Research Laboratories, Slough, Stoke
Pages, Great Britain

Experiment Origin: Great Britain

Mission: STS Launch #9, STS-009 (STS 41-A, Spacelab i: Columbia)
Launch Date/Expt. Date: November 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility, Materials Science Double

Rack (MSDR)

Processing Facility: Isothermal Heating Facility (IHF) Furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Metallic Emulsions AI-Pb IES309

When there is a significant density difference between the matrix

melt and dispersion droplets in a metallic emulsion, the Earth-

processed emulsion is affected by gravity-induced (i) segregation

of the constituents and (2) agglomeration of the droplets. In

the low-gravity environment however, such segregation and ag-

glomeration should be reduced resulting in (i) increased emulsion

stability and (2) improved component dispersion.

This experiment was the second in an series of investigations

designed by Caton and/or Goodhew et al. to study the stability of

a metallic dispersion (see Caton, TEXUS 7). (The rest of the ex-

periments in the series are in Chapter 5 under Goodhew, TEXUS 12,

TEXUS 14a, and TEXUS 14b.) The specific objective of the experi-

ment was to solidify an aluminum melt containing a fine disper-
sion of lead droplets.

The expected solidification sequence was to be as follows:

"...heat the aluminum-lead alloy samples into the single liquid

region, allow sufficient time for complete... [homogenization],

cool to predetermined temperatures in the two-liquid region, hold

for a particle growth period and cool to solid state. Identical

samples will be given a similar heat treatment cycle, except that

the holding period in the two-liquid region will be omitted." (i,
p. 91)

Documentation detailing the in-flight experiment performance or

the post-flight experiment results could be located at this time.

Investigator input indicated that no useful data were obtained.
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metals, Metallic Matrix, Phase Separation,

Dispersion Alloys, Dispersion Strengthening, Melt and Solidifica-

tion, Drops, Drop Formation, Droplet Agglomeration, Particle

Growth, Stability of Dispersions, Metallic Dispersion, Particle

Dispersion, Droplet Dispersion, Liquid/Liquid Dispersion,

Homogeneous Dispersion, Emulsion, Liquid/Liquid Interface, Den-

sity Difference, Separation of Components, Segregation, Sedimen-

tation, Stokes Sedimentation, Buoyancy Effects, Surface Tension,

Surface Energy, Interface Physics, Solid/Liquid Interface, Inclu-

sion and/or Rejection of Particles, Solidification Front Physics,

Superconductivity, Processing Difficulties

Number of Samples: It appears that two samples may have been

processed in flight.

Sample Materials: aluminum _matrix) with lead droplets

(dispersion phase)

(Al*Pb*)

Container Materials: unknown

Experiment/Material Applications:

"There are many engineering applications in which improved per-

formance can be obtained from a metallurgical structure consist-

ing of a uniform dispersion of fine particles of one phase within

the bulk matrix phase. The particles may be harder than the

matrix to give strengthening, as in the case of dispersion har-

dened metals, or softer to provide grit embedability[sic], as in

the case of plain bearing alloys." (i, p. 89) More specifically,

"There is considerable commercial interest in AI-Pb alloys.

Early work.., was directed towards improving the machinability of

aluminum alloys. Subsequently, the bulk of the effort has been

directed towards obtaining an improved plain bearing material as

a replacement for the intrinsically more expensive aluminum-tin

alloys .... More recently, there are claims.., that greatly im-

proved superconductivity properties could be achieved from AI-Pb

alloys if the structure is carefully controlled." (i, p. 91)

The AI-Pb system was chosen for several reasons. As one example

it was noted that "The wide difference between the densities of

aluminum (2.3) and lead (10.3) causes rapid Stokes migration

[(settling of the dense lead in the aluminum)] in the Earth

processed material. The differences between this and the

microgravity processed material should therefore be more marked

than for alloy systems which have smaller differences between the

densities of the two liquids .... " (i, p. 91)
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References/Applicable Publlcations:

(I) Caton, P. D. and Hopkins, W. G.: The Preparation and

Stability of Metallic Emulsions in Microgravity Environment: An

Experiment for the First Space Shuttle Payload (FSLP). In Proc.

of the 3rd European Symposium on Material Science in Space,

Grenoble, April 24-27, 1979, ESA SP-142, pp. 89-94. (preflight)

(2) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by
NASA. In Workshop Proceedings of Measurement and Characteriza-

tion of the Acceleration Environment On Board the Space Station,

August 11-14, 1986, Guntersville, Alabama, pp. 9-1 - 9-48.

Teledyne Brown Engineering Publication (acceleration

measurements)

(3) Input received from Experiment Investigator, November 1989.

Contact(s)=

Dr. P. Caton

Fulmer Research Laboratory

Hollybrush Hill

Stoke Pages

GB-Slough, Berks SL2 4QD

Great Britain

Dr. T. W. Clyne

University of Cambridge

Department of Materials Science & Metallurgy

Pembroke Street, Cambridge

CB2 3QZ

England
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Principal Investigator(s): Bethin, J. (I)

Co-Investigator(s): Unknown

Affiliation(s): (1) Corporate Research Center, Grumman Aerospace

Corporation, Bethpage, New York

Experiment Origin: USA
Mission: SPAR I0

Launch Date/Expt. Date: June 1983

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: Automated Directional Solidification System

(ADSS)/Automated Directional Solidification Furnace (ADSF-I, Low

Temperature Version) The ADSS was designed to insure that furnace

translations resulted in a total ADSS momentum of zero.

Builder of Processing Facility: General Electric Company, King of

Prussia, Pennsylvania

Experiment:

Directional Solidification of Magnetic Composites

This SPAR i0 experiment was the third in a series of investiga-

tions designed by Bethin and/or Pirich et al. to study the low-

gravity directional solidification of a Bi/MnBi eutectic (see

Pirich, SPAR 6, SPAR 9 (this chapter)).

During the rocket flight, two hypoeutectic and two hypereutectic

samples were solidified in a Bridgman-Stockbarger configuration

in the Automated Directional Solidification System (ADSS). A

_lanar solidification interface was produced at approximately 265

C. Reportedly, while a furnace _radient of i00 °C/cm was
employed on both SPAR 6 and 9, a 140 C/cm gradient was employed

on SPAR i0. Further, a furnace velocity of ii cm/h was chosen in

contrast to SPAR 6 (30 cm/h) and SPAR 9 (50 cm/h).

Flight samples were compared to similarly processed samples

prepared on the ground. Reportedly, "Macrosegregation... was

consistent with a metastable increase in Mn solubility in the Bi

matrix, in partial agreement with previous Bi/MnBi SPAR findings

of MnBi volume reduction. Smaller mean rod diameter and interrod

spacing were found in solidification in low gravity, as compared

to Earth gravity, in agreement with previous SPAR findings. In

addition, in normal gravity, Mn macrosegregation results for the

hypereutectic samples suggest that the thermal instability led to

greater convection than did the induced solutal instability.

Convection in Earth gravity is suggested as an explanation of

morphological differences between normal- and low gravity

solidification. This explanation is consistent with a possible

change in the equilibrium solubility limit of Mn in Bi observed

in low gravity." (i, p. 14)
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Eutectics, Magnetic Composites, Magnetic Properties, Hyper-

eutectics, Hypoeutectics, Metallic Matrix, Phase Separation, Bi-

nary Systems, Melt and Solidification, Directional Solidifica-

tion, Bridgman Technique, Thermal Gradient, Solutal Gradients,

Thermosolutal Convection, Buoyancy-Driven Convection, Undercool-

ing, Dispersion, Particle Dispersion, Macrosegregation,

Solidification Rate, Furnace Translation, Translation Rate,

Planar Solidification Interface, Liquid/Liquid Interface,

Solid/Liquid Interface, Interrod Spacing, Sample Microstructure,

Rod Structure

Number of Samples: four

Sample Materials: bismuth/bismuth-manganese samples of 0.90 and

0.49 wt.% Mn

(Mn*Bi*)

Container Materials: quartz

(Si*O*)

Experlment/Material Applications:

See Pirich, SPAR 6.

References/Applicable Publications:

(i) Bethin, J.: SPAR X Technical Report for Experiment 76-22,

Directional Solidification of Magnetic Composites. In Space

Processing Applications Rocket (SPAR) Project, SPAR X Final

Report, NASA TM-86548, pp. 13-46, July 1986. (post-flight

Report)

(2) Bethin, J.: SPAR i0 Technical Report for Experiment 76-22.

Directional Solidification of Magnetic Composites, NASA CR-

171271, 1984, 51 pp.

(3) Bethin, J.: SPAR X Technical Report for Experiment 76-22,

Directional Solidification of Magnetic Composites. Report RE-

691, November 1984, 45 pp. (post-flight)

(4) General Electric Company, Space Sciences _aboratory: Operat-

ing Manual for Automated Directional Solidification System.

Prepared for NASA under Contract NASS-31536, 1978. (processing

facility)
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Contact(s):

J. Bethin

Corporate Research Center

Mail Stop A-01-26

Grumman Corporation

Bethpage, NY 11714-3580
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Prinoipal Investigator(s): Bennit, C. (Project Manager) (i)

Co-Investlgator(s): None

Affiliatlon(s): (1) During Launch: California Institute of Tech-

nology, Pasadena, California, Currently: Hughes Aircraft Company,

E1 Segundo, California

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment; NASA Get Away Special

(GAS) Canister G-033

Volume of Canister 5.0 cubic feet

Location of Canister: STS Payload Bay

<Note: The reflight of this experiment will be on Get Away Spe-

cial (GAS) Canister G-056.)

Primary Developer/Sponsor of G-033: Caltech Student Space Or-

ganization, California Institute of Technology, Pasadena,

California/Steven Spielberg

Processing Facillty: Container(s) of oil and water mixed by a

stirring system and then photographed

Builder of Processing Facility: Unknown

Experiment:

Separation of Oil and Water

This experiment was one of two investigations housed within the

G-033 Getaway Special Canister during STS-007. The other experi-

ment within the canister (plant gravireception) was not ap-

plicable to this data base. The objective of the de-mixing ex-

periment was to investigate the separation of oil and water in

the low-gravity environment.

Specific objectives of the investigation were not detailed in

documents which described the STS-007 experiment. However,

Reference (6) (listed below) detailed a future Caltech oil-

emulsion GAS canister experiment which was to be a reflight of

this STS-007 experiment. It is unclear if this future version of

the experiment is essentially the same as the experiment flown on

STS-007. Reportedly, "The [future] oil emulsion experiment will

study the mechanisms of droplet coalescence in various mixtures

of oil and water. By using this transparent system instead of

liquid immiscible metals, it is possible to photographically

record the rate of coalescence between normally immiscible

materials that exhibit miscibility in space. The more than 400

exposures taken (in 60 hours as oil and water separate after an

initial mixing) should determine feasibility of space-based im-

miscible alloys production." (6, p. Ii)
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Two documents published prior to the launch of STS-007

(References (i) and (2)) briefly described the expected STS-007

experimental setup. Initially, the oil and water systems were to

be mixed by a motor-driven stirring system. Then the subsequent

de-mixing of the components was to be photographed during the

following 96 hours. (It appears that the temperature of the

fluid was to be controlled throughout the duration of the experi-

ment.) Available references did not further describe the STS-007

experimental setup.

Reportedly, no data were collected from either experiment in the

canister (the mixing experiment or plant gravireception) because

"A 3-amp fuse.., replaced inadvertently with a 1-amp fuse during

final safety checks..." (7, p. 26) blew at the moment of payload

activation.

No further details which specifically described this STS-007 ex-

periment could be located.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Binary Systems, Transparent Liquids, Stirring of Com-

ponents, Emulsion, Phase Separation, Stability of Dispersions,

Liquid/Liquid Dispersions, Droplet Dispersion, Liquid Mixing,

Liquid Demixing, Drop Coalescence, Separation of Components,

Liquid/Liquid Interface, Contained Fluids, Sample Not Processed

As Planned, Fuse Blowout

Number of Samples: unclear

Sample Materials: oil, water

Container Materials: STS-007: unknown; future mission: Lexan TM

Experiment/Material Applications:

It was expected that the results of this experiment would

"...allow predictions to be made about the possibilities of

manufacturing materials such as improved metal alloys and semi-

conductors in zero-gravity." (2, p. 56)

References/Applicable Publications:

(i) STS-7 Cargo Systems Manual: Gas.

Version PCN-I, NASA JSC, April i, 1983.

JSC-17645 Annex 7 Basic

(preflight)
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(2) NASA STS-7 Seventh Space Shuttle Mission, Press Kit, June,

1983, p. 56. (preflight)

(3) STS-7 Getaway Specials. NASA News, NASA GSFC, May 1983.

(4) Veronda, W.: Space Shuttle: Lab Site for Student Research.

Caltech News, June 1983.

(5) Blown Fuse Aborts SSO Experiments Aboard Space Shuttle.

Caltech News, October 1983.

(6) Wahl, T. and Barbiere, R. C.: GAS Experiment at Cal Tech.
AIAA Student Journal, Fall 1988, pp. I0, ii, and 48. (discusses

future GAS flight)

(7) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronauts Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

(8) Input received from student familiar with experimental

payload, October 1989.

Contact(s):

Connie Bennit

Hughes Aircraft Company

200 North Sepulveda Blvd.

Bldg. $64

Mail Stop: A477

E1 Segundo, CA 90245

Rich Barbiere

Ford Aerospace
1760 Business Center Drive

Reston, VA 22090
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Principal Investigator(s): Kamio, A. (i)

Co-Investigator(s): Tezuka, T. (2), Kumai, S. (3)

Takahashi, T. (4)

Affiliation(s): (1) Department of Metallurgical Engineering,

Tokyo Institute of Technology, Tokyo, Japan; (2,3) Tokyo In-

stitute of Technology, Tokyo, Japan; (4) Chiba Institute of Tech-

nology, Narashino, Japan

Experiment Origin: Japan

Mission: TT-500A 13 (Materials Processing Flight #6)

Launch Date/Expt. Date: August 1983
Launched From: Takesaki Launch Site in Tanegashima Island

(Tanegashima Space Center, NASDA, Japan)

Payload Type: Sounding Rocket Experiment

Processing Facility: Electric furnace with acoustic mixing

Builder of Processing Facility: Ishikawajima-Harima Heavy In-

dustries Co., Ltd. (IHI), Tokyo, Japan

Experiment:
Al-In: Acoustic Mixinq in an Electric Furnace/Graphite Crucible

<No document, published in English, could be located which dis-

cussed the objectives, experimental setup, or results of this ex-

periment. The following summary was based on the Principal

Investigator's response, August 1988.>

This TT-500A experiment was designed to study the melting and

solidification of an immiscible alloy in a furnace equipped with

an acoustic mixing device. The objectives of the investigation

were to (i) use acoustic mixing to obtain a uniform alloy melt,

(2) produce a solidified, uniform immiscible alloy, (3) establish

melting and solidification techniques in space, (4) analyze the

resulting segregation and agglomeration phenomena in a two liquid

system during solidification, and (5) investigate the wetting

phenomena between molten metals and crucible materials.

Prior to the rocket flight, an AI-30 mass% In sample (i0 mm

diameter, 47 mm long) was configured in a graphite crucible A

During the low-gravity portion of the mission (reportedly i0 -=

g), the hyper-monotectic alloy was melted, subjected to acoustic

mixing (15 kW, 50 kHz) for 210 seconds, cooled, and solidified.

Post-flight examination of the solidified material revealed that

the dispersion of In particles was relatively homogeneous.

However, remarkably normal segregation of In was observed in the

sample. The In-rich liquid, which separated in the immiscible

temperature range, preferentially wetted the crucible wall. A

thin film (150 to 200 microns thick) coated the sample surface.
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Monotectic Compositions,

Hypermonotectic Compositions, Melt and Solidification, Acoustic

Mixing, Dispersion, Phase Separation, Homogeneous Dispersion,

Liquid/Liquid Dispersion, Liquid/Liquid Interface, Particle Ag-

glomeration, Segregation, Material Interaction with Containment

Facility, Wetting, Wetting of Container, solid/Liquid Interface,

Thin Films, Coated Surfaces

Number of Samples: one

Sample Materials: AI-30 mass% In

(Al*In*)
Container Materials: graphite

(c*)

Experiment/Material Applications:
No discussion of the material application could be located in the

published literature.

References/Applicable Publications:

(i) Takahashi, T., Kamio, A., Tezuka, H., and Kumai, S.:

Solidification of an Immiscible Al-In Alloy. Rep. of NASDA-PSPC-

2769, SS58-I05 (1983), p. 13.

(2) Takahashi, T., Kamio, A., Tezuka, H., and Kuami, S.:
Solidification of Monotectic Alloys in Space. Journal of Japan

Institute of Light Metals, Vol. 34, No. 8 (1984), pp. 479-492.

(in Japanese)

(3) Input received from Principal Investigator A. Kamio, August

1988.

Contact(s):

Akihiro Kamio

Professor Department of Metallurgical Engineering

Tokyo Institute of Technology

2-12-1, Ookayama, Meguro-Ku, Tokyo,

Tokyo 152

Japan
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Princlpal Investlgator(s): Ahlborn, H. (i), L6hberg, K. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1) Universit_t Hamburg, Germany; (2) During STS

41-A: Berlin Technische, Federal Republic of Germany, Currently:
Deceased

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #9, STS-009 (STS 41-A, Spacelab I: Columbia)

Launch Date/Expt. Date: November 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab facility, Material Science Double Rack

(MSDR)

Processing Facillty: Isothermal Heating Facility (IHF): furnace

filled with helium (pressure: 1 bar at 850 °C).

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Solidification of Immiscible Alloys Part 1- Binary Systems: Zn-

Bi, Zn-Pb (IES301) and Part 2- Ternary System: Zn-Bi-Pb (1ES306)

During both ground-based and space-based investigations,

homogeneous melts of monotectic alloys have separated into two

phases during cooling. It was, therefore, concluded that gravity

is not the primary driving force for this separation. Studies

indicated that the separation was greatly dependent on either (i)

the volume content of the minority phase or (2) the interfacial

energy differences between sample components.

This Spacelab 1 experiment was the third in a series of inves-

tigations designed by Ahlborn and/or L6hberg et al. to study the

solidification of metallic alloys (see L6hberg, SPAR 2 (Chapter

17) and Ahlborn, TEXUS 1 (Chapter 6)). The specific objective of

the experiment was to determine the cause of of the phase separa-

tion of immiscible systems by "...using specimens from two dif-

ferent binary systems and from the ternary system formed from

these two binary systems, to... [obtain a] continuous transition

from the interfacial energy of one to the other system." (i, p.

55)

During the mission, 7 samples of Zn-Bi, 7 samples of Zn-Pb, and

14 samples of Zn-Bi-Pb were heated to 850 °C in the Spacelab

Isothermal Heating Facility. <Note: The specific compositions of

these 28 samples were reported in figures 1 and 2 of Reference

(i). Compositions ranging from a few volume % Zn to nearly i00

volume % Zn were selected. (See Reference (i) for more

details.)> After a soak time of 15 minutes, the samples were

cooled at a rate of nearly 30 K/min through the miscibility gap.

It was noted that both axial and radial temperature gradients ex-
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isted within the crucibles.

<Note: Processing of the 7 Zn-Bi samples and the 7 Zn-Pb samples

was achieved during the first experiment (designated as IES301);

processing of the 14 Zn-Bi-Pb samples was achieved during the

second experiment (IES306). The two experiments were processed

one after another and had nearly identical time-temperature

profiles. Although it is unclear, it appears that a single

cartridge held 14 samples during each processing run.>

Post-flight examination of the samples indicated that an in-

homogeneous distribution of the minority phase occurred and that

there was essentially a pronounced enrichment of minority phase

droplets in the part of the specimen which experienced the hot-

test temperature. "Obviously the droplets formed during cooling

through the miscibility gap were transported to this hotter

side." (i, p. 57) Droplet size differences between specimens

were noted, and generally the Zn-rich alloys had much smaller

drops than the Pb or Bi rich specimens. While it was concluded

that the size of the droplets was "...mainly determined by the

volume portion of the minority phase, the temperature interval...

[had] no valuable influence." (I, p. 55)

"The results show that the separation process in monotectic al-

loys is governed by the growth of the precipitated droplets of

the minority phase and their transport to the hotter part." (i,

p. 59) Two droplet growth processes dependent on the interface

energies and viscosities of the employed melts were discussed in

light of the results: (i) coagulation by collision and movement

of droplets by a Marangoni force and (2) coagulation migration

due to the overlapping of diluted zones around the droplets (see

Reference (i)).

It was concluded that the results of the experiment did not indi-

cate which separation process(es) were the most important during

the experiments. Reportedly, if a homogeneous distribution of

small sized droplets of the minority phase in a liquid matrix is

desired, future experiments must have a minority volume portion

no greater than 5%, "...a low interracial energy between the

droplets and the matrix and a high viscosity of the matrix." (i,

p. 6o)
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Metals, Monotectic Compositions, Binary Systems, Ternary

Systems, Metallic Matrix, Melt and Solidification, Drops,

Coagulation, Droplet Collision, Drop Migration, Droplet Size,

Particle Growth, Particle Motion, Metallic Dispersion,

Homogeneous Dispersion, Liquid/Liquid Dispersion, Minority Phase,

Separation of Components, Marangoni Force, Marangoni Movement of

Droplets, Interfacial Energy, Viscosity, Density Difference,

Precipitation of Second Phase, Phase Separation, Separation of

Components, Liquid/Liquid Interface, Solid/Liquid Interface,

Thermal Soak, Thermal Gradient, Solidification Rate

Number of Samples: twenty-eight

Sample Materials: Zn-Bi, Zn-Pb (experiment IES301) and Zn-Bi-Pb

(experiment IES306)

(Zn*Bi*, Zn*Pb*, Zn*Bi*Pb*)

Container Materials: graphite

(c*)

Experiment/Material Applications:

This experiment sought to investigate separation processes which

occur in both space and ground-based processing of homogeneous,

monotectic alloys cooled through the miscibility gap. Dif-

ferences in density of the molten phases causes separation to oc-

cur, and resultant alloys may not be fit for some technical ap-

plications.

The Zn-Pb, Zn-Bi and Zn-Pb-Bi systems were chosen for many

reasons including the following:

"-one component (Zn) is common for all systems, providing the

same matrix for precipitation of different droplets.

"-the monotectic temperatures of the alloys from the binary and

ternary systems are nearly the same (418-416 °C) ....

"-the temperature intervals in which precipitation of droplets

occurs can be varied widely for the same volume portion of the

minority phase .... " (i, p. 56)

(Additional reasons are reported in Reference (i), p. 56)
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References/Applicable Publications:

(i) Ahlborn, H. and Lbhberg, K.: Influences Affecting Separation

in Monotectic Alloys Under Microgravity. In ESA 5th European

Symposium on Material Sciences Under Microgravity, Results of

Spacelab I, Schloss Elmau, November 5-7, 1984, ESA SP-222, pp.
55-61.

(2) Chassay, R. P and Schwaniger, A.: Low-G Measurements by

NASA. In Workshop Proceedings of Measurement and Characteriza-

tion of the Acceleration Environment On Board the Space Station,

August 11-14, 1986, Guntersville, Alabama, pp. 9-1 - 9-48.

(acceleration measurements on Spacelab)

(3) Whittman, K: The Isothermal Heating Facility. In ESA 5th

European Symposium on Material Sciences Under Microgravity,

Results of Spacelab i, Schloss Elmau, November 5-7, 1984, ESA

Publication ESA SP-222, pp. 49-54. (IHF facility)

Contact(s}:

Prof. Dr. H. Ahlborn

Universitat Hamburg

Von-Mell-Park 8

D-2000 Hamburg 13

Germany
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Principal Investigator(s): Ahlborn, H.
Co-Investigator(s): Unknown
Affiliation(s): Universit_t Hamburg, Germany

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #22, STS-030 (STS 61-A, Spacelab DI:

Challenger)

Launch Date/Expt. Date: October 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab facility, Materials Science Double

Rack (MSDR)

Processing Facility: Isothermal Heating Facility (IHF) Furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Separation of Immiscible Melts (WI-IHF-01)

This Spacelab D1 experiment was the fourth in a series of inves-

tigations designed by Ahlborn and/or L6hberg et al. to study the

solidification of metallic alloys (see L6hberg, SPAR 2 (Chapter

17), Ahlborn, TEXUS I, Spacelab 1 (Chapter 6)). Earlier research

in this investigative series (designed to investigate the

processes governing separation of immiscible alloys in both

ground-based and space-based laboratories), was extended on this

Spacelab D1 mission. The specific objectives of this experiment

were (i) to study the transport of minority-phase droplets due to

the Marangoni force and (2) to find a composition at which a

homogeneous distribution of these droplets would result.

Eleven binary (Zn-Pb, Zn-Bi) and ternary (Zn-Pb-Bi) systems

(similar to those examined during Spacelab i) were employed. In

addition, three AI-Pb systems were processed. <Note: The

volume percentages of each of the materials was not specifically

stated, although they can be somewhat derived from Reference

(5).> Two of the Al-Pb specimens "...consisted of a pure AI-

ingot in which Pb balls with 2 and 4 mm diameter were incor-

porated in the molten state. The third specimen consisted of pure

Pb in which an A1 cylinder (4mm long, 4mm diameter) has been

mechanically embedded. At the temperature of 850 deg. C planned

for this experiment, these specimens are still within the mis-

cibility gap. Accordingly, the Marangoni transport to the hotter

side should take place during holding at this temperature." (5,

p. 298)

Samples were to be processed similarly to samples solidified

during Spacelab 1 with a radial temperature gradient available to

initiate and sustain Marangoni droplet transport. Unfortunately,

a more pronounced axial temperature gradient existed in the D-I
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experiment than planned.

Post-flight analysis of the samples confirmed Spacelab 1 observa-
tions. "The size of the minority phase droplets in the same sys-
tem depends mainly on its volume content. Although there ex-
isted... [a] stronger axial temperature gradient inside the
specimens, the influence of the radial gradient on the transport
of the minority phase droplets towards the inner (hotter) side
was confirmed too." (5, p. 301) "The Pb droplets incorporated in
the Al-specimens were largely dissolved due to a higher tempera-
ture in the furnace than planned. A Marangoni-transport of the
larger droplets to the side of the specimen with the higher tem-
perature gradient could not be observed." (I, p. 80)

<Note: Further discussions of the separation mechanisms related
to differences in viscosities of the melt, size and distribution
of droplets of the minority phase, etc. were presented in
Reference (5). A small section of this discussion as it related
to the experimental objectives, is reproduced below:>

"The size and the distribution of droplets of the minority phase
in the Zn-rich matrices show that it will be very difficult to
get homogeneous distributed droplets with diameters smaller than
1 _m, even if the gravity driven segregation is avoided ....
[T]he temperature gradient gives rise to the Marangoni motion
even in case of equal volume fractions of both components. The
Marangoni motion will be slow because of the small size of the
droplets of the minority phase in the Zn-Pb or Bi based matrix.
Interface energies are equal in both cases if the temperature in-
terval of the precipitation does not differ. Accordingly, it
seems that the viscosities of the fluid phases play a dominant
role. The lower the viscosity of the liquid matrix, the higher
is the velocity of the Marangoni motion and the more probable the
collision of droplets, the larger will be their final size." (5,
p. 3o2)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Metals, Binary Systems, Ternary Systems, Metallic Matrix,

Melt and Solidification, Drops, Droplet Collision, Drop Migra-

tion, Droplet Size, Particle Size Distribution_ Particle Motion,

Droplet Dispersion, Metallic Dispersion, Homogeneous Dispersion,

Liquid/Liquid Dispersion, Minority Phase, Separation of Com-

ponents, Marangoni Force, Marangoni Movement of Droplets, Maran-

goni Movement of Droplets, Interfacial Energy, Viscosity, Com-

position Distribution, Density Difference, Segregation,

Precipitation of Second Phase, Phase Separation, Separation of
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Components, Liquid/Liquid Interface, Solid/Liquid Interface,

Thermal Gradient, Thermal Environment More Extreme Than Pre-

dicted, Sample Evaporation

Number of Samples: fourteen

Sample Materials: Zn-Bi, Zn-Pb, AI-Pb, and Zn-Pb-Bi. <Note: See

Reference (5) for more information.>

(Zn*Bi*, Zn*Pb*, Zn*Pb*Bi*, AI*Pb*)

Container Materials: Unknown, possibly graphite. (Spacelab 1 ex-

periments employed graphite crucibles.)

(c*)

Experiment/Material Applications:

See Ahlborn, Spacelab i.

References/Applicable Publications:

(i) Ahlborn, H. and L6hberg, K.: Separation of Immiscible Alloys

Under Reduced Gravity. In BMFT/DFVLR Scientific Results of the

German Spacelab Mission DI, Abstracts of the D1 Symposium, Nor-

derney, Germany, August 27-29, 1986, p. 80. (abstract only)

(2) Ahlborn, H. and L6hberg, K.: Separation nicht mischbarer
Schmeltzen unter verminderter Schwerkraft. In Naturwissenschaf-

ten, 73.Jahrgang Heft 7, July 1986, pp. 378-380. (in German)

(3) Ahlborn, H.: Separation of Immiscible Melts. In Scientific

Goals of the German Spacelab Mission DI, WPF, 1985, pp. 131-132.

(preflight)

(4) Hamacher, H., Merbold, U., and Jilg, R.: Analysis of

Microgravity Measurements performed During DI. In Proceedings of

the Norderney Symposium on Scientific Results of the German

Spacelab Mission DI, Norderney, Germany, August 27-29, 1986, pp.

48-58. (post-flight; acceleration measurements)

(5) Ahlborn, H. and L6hberg, K.: Separation of Immiscible Alloys

Under Reduced Gravity. In Proceedings of the Norderney Symposium

on Scientific Results of the German Spacelab Mission DI, Norder-

ney, Germany, August 27-29, 1986, pp. 297-304. (post-flight)
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Principal Investigator(s): Fischmeister, H. (i), Kneissl, A. (2)

Co-Investlgator(s): Pfefferkorn, R. (3), Trimmel, W. (4)

Affiliation(s}: (i) Max-Plank-Institut fur Metallforschung, Stut-

tgart, Germany; (2) Montanuniversit_t Leoben, Leoben, Austria;

(3) Balzers AG, Liechtenstein; (4) V6est-Alpine Stahl Linz Ges.

u.b.H., Linz, Austria

Experiment Origin: Austria

Mission: STS Launch #9, STS-009 (STS 41-A, Spacelab i: Columbia)

Launch Date/Expt. Date: November 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility, Material Science Double Rack

(MSDR)

Processing Facility: Isothermal Heating Facility (IHF) furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Solidification of Near Monotectic ZnPb Alloys (IES313)

This Spacelab 1 experiment was the first in a series of inves-

tigations designed by Fischmeister et al. to study the

solidification of immiscible alloys under low-gravity conditions.

The specific objectives of this experiment were to (i) determine

if Zn-Pb alloys could be maintained in the dispersed state within

the miscibility gap and (2) examine the coarsening behavior of

the lead particles within the system.

The sample preparation was different from previous low-gravity

experiments (e.g., see Fredriksson, TEXUS 2; Fredriksson, TEXUS

14b (this chapter)): (i) the samples contained a low volume frac-

tion (below 2 vol.%) of the dispersed droplets (Pb) and (2) the

samples contained a finely dispersed two-phase structure

(obtained by quench casting). The low volume fraction samples

reduced the probability of demixing by coalescence of the

particles; the initial finely dispersed structure resulted in a

retention of the Pb-rich particles as droplets which excluded the

nucleation of droplets from a single phase melt.

Prior to the mission, two sets of samples of the Zn-Pb alloy (2

wt.%, 2.5 wt.%, 3 wt.%, 4 wt.%, and 5 wt.%) were prepared by

quench casting in either Cu or cast iron molds. The different

mold materials were used to produce different Pb particle sizes

(sizes ranged from i.i to 9 microns; see Reference (i) for

details). The specimens were machined to 5.0 mm diameter and 15

mm length. "Three of these were enclosed in a tantalum tube of

0.5 mm wall thickness to contain the Zn vapour pressure in the

event of gross overheating of the... [furnace] .... Six ampoules

were jointly placed in a graphite block in an IHF [Isothermal

17-191



Heating Facility] cartridge, with three thermocouples monitoring

the temperature at opposite ends and in the center of three sym-

metrically placed ampoules." (i, p. 64) <Note: This description

of the specimen configuration was not clear to the editors. In-

formation provided by the Principal Investigator (Reference (7))

seems to imply the following: (i) the above quote refers to 18

specimens, (2) the 18 specimens were placed in 6 tantalum

crucibles (3 specimens per crucible), and the 6 crucibles

(ampoules) were placed in 1 IHF cartridge.>

During the Spacelab 1 mission, the Isothermal Heating Facility

(IHF) was used to melt and resolidify the samples. The samples

were heated to 475 °C and held at that temperature for 60

minutes. Reportedly, "The temperature of the isothermal hold had

been intended to be 450 °C, which would have left all samples

with 2 wt.% Pb in dispersion. Overheating in the IHF to 475 °C

homogenized this alloy, and on cooling L2-droplets had to

nucleate." (4, p. 162)

"Two microgravity runs were planned, each with a set of specimens

with different volume fractions and initial particle sizes, to

secure mutually supporting data on particle coarsening. [The

second run was to be performed at a higher temperature in order

to study the temperature influence on Ostwald ripening.] Unfor-

tunately, the second run... [had] to be cancelled after a system

malfunction which severely curtailed available IHF time." (i, p.

64) <Note: The number of samples processed during each run was

not clear. It appears that each set consisted of 18 specimens.>

Further, while the sample crucibles were designed with a volume

expansion mechanism, "Because of an error in manufacturing, the

specimens were instead enclosed with a tight fit in the tantalum

ampoules. This led to fracture and expulsion of some of the melt

in several flight samples." (i, p. 64) This problem may have

resulted in a higher level of convection in the sample melt than

originally planned.

It was reported that "about half of the 18 samples were affected"

by the fracture and expulsion of the melt by volume expansion.

"...six were strongly affected and 3... [slightly affected] by

partial fracture of the tantalum ampoules, so that 9 samples

could be used for careful examination." (Reference (7))

Postflight analysis of the flight and l-g processed reference

samples included light metallography and _canning electron

microscopy examinations. Data were reported in terms of

"diameters of circles of area equivalent to particle intersects."

No attempt was made to determine three-dimensional particle
diameters because of the accumulation of error in the numerical

integration procedures. It was reported that very little migra-

tion of the Pb particles toward specimen edge occurred. The
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samples largely exhibited a homogeneous structure. However, the

particles in all samples did undergo a significant amount of

coarsening. Plotting the amount of coarsening versus time

(diffusion-controlled coarsening according to the LSW model, see

Reference (i)) indicated a strong dependence on initial volume

fraction of the Pb-rich droplets. <Note: 'LSW' refers to the

theory of Ostwald Ripening by Lifshitz, Slyozov, and Wagner.>

Analysis led to the conclusion that coarsening was attributed to
an Ostwald mechanism rather than coalescence due to convection

mechanisms. "In view of the lack of reliable diffusivity data,

we can only conclude that the identification of Ostwald ripening

as the main mechanism of particle coarsening.., is not con-

tradicted by available data." (i, p. 68)

<Note: Reference (5) was not translated prior to the preparation

of this experiment summary. Thus, the information within

Reference (5) is not represented in this summary.>

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Monotectic Compositions, Metallic Matrix, Binary Systems,

Melt and Solidification, Drops, Phase Separation, Metallic Dis-

persion, Homogeneous Dispersion, Liquid/Liquid Dispersion,

Liquid/Liquid Interface, Particle Dispersion, Stability of Dis-

persions, Ostwald Ripening, Particle Coarsening, Particle Coales-

cence, Particle Size Distribution, Drop Migration, Particle

Migration, Nucleation, Separation of Components, Liquid Demixing,

Diffusive Mass Transfer, Thermal Soak, Isothermal Processing,

Solid/Liquid Interface, Volume Compensation, Volume Expansion,

Liquid Leakage, Liquid Transfer, Thermal Environment More Extreme

Than Predicted, Processing Difficulties, Hardware Malfunction,

Sample Not Processed As Planned

Number of Samples: eighteen

Sample Materials: Zn-Pb samples with 2 wt.% Pb, 2.5 wt.% Pb, 3

wt.% Pb, 4 wt.% Pb, or 5 wt.% Pb

(Zn*Pb*)

Container Materials: tantalum crucibles contained within graphite

blocks

(Ta*, C*)
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Experlment/Material Applications:

No discussion of the material application could be located in the

published literature.

References/Applicable Publications:

(1) Kneissl, A. and Fischmeister, H.: Particle Coarsening in Im-

miscible Zinc-Lead Alloys Under Microgravity. In ESA 5th

European Symposium on Material Sciences Under Microgravity,

Results of Spacelab I, Schloss Elmau, November 5-7, 1984, ESA SP-

222, pp. 63-68. (post-flight report)

(2) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by

NASA. In Workshop Proceedings of Measurement and Characteriza-

tion of the Acceleration Environment On Board the Space Station,

August 11-14, 1986, Guntersville, Alabama, pp. 9-1 - 9-48.

(acceleration measurements)

(3) Whittmann, K.: The Isothermal Heating Facility. In ESA 5th

European Symposium on Material Sciences Under Microgravity,

Results of Spacelab i, Schloss Elmau, November 5-7, 1984, ESA

Publication ESA SP-222, pp. 49-54.

(4) Ratke, L., Fischmeister, H., and Kneissl, A.: Coarsening of

Liquid Zn-Pb Dispersions - A Spacelab Experiment. In Proceedings

of the 6th European Symposium on Material Sciences under

Microgravity Conditions, Bordeaux, France, December 2-5, 1986,

ESA SP-256, pp. 161-167. (post-flight)

(5) Kneissl, A. and Fischmeister, H. F.: Schmelzen und Erstarren

von _bermonotektischen Zink-Blei-Legierungen unter Schwerelosig-

keit. Metall 38 (1984), pp. 831-837. (in German)

(6) Coarsening of Liquid Zn-Pb Dispersions- Final Evaluation of a

Spacelab 1 Experiment. Proceedings VII European Symposium on

Materials and Fluid Sciences in Microgravity, Oxford, UK, Septem-

ber 10-15, 1989, ESA SP-295 (January 1990), pp. 135-140.

(postflight)

(7) Input received from Principal Investigator A. Kneissl, August

1993.
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Contact(s):

Prof. Dr. H. Fischmeister

MPI f. Metallforschung

Werkstoffwissenschaften

Seestr. 92

D-7000 Stuttgart 80

Germany

Prof. Dr. A. Kneissl

Institut fur Metallkunde und Werkstoffpr_fung
Montanuniversit_t Leoben

A-8700 Leoben

Austria

17-195



Principal Investigator(s): Fischmeister, H. (1)

Co-Investigator(s): Unknown

Affiliation(s): (1) Max-Plank-Institut f_r Metallforschung, Stut-

tgart, Germany

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #22, STS-030 (STS 61-A, Spacelab DI:

Challenger)

Launch Date/Expt. Date: October 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility, Materials Science Double

Rack (MSDR)

Processing Facility: Isothermal Heating Facility (IHF) furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Ostwald Ripeninq in Metallic Melts-Interfacial Phenomena and

Transport Processes in Binary Monotectic Alloys (WL-IHF 04)

This Spacelab D1 experiment was the second in a series of inves-

tigations designed by Fischmeister et al. to study the

solidification of immiscible alloys under low-gravity conditions

(see Fischmeister, Spacelab i). The specific objectives of the

experiment were to (i) study Ostwald Ripening in Al-In alloys of

different compositions, (2) examine the development of grain

boundary grooves at the interface between Al-bicrystals and an

Al-In melt, and (3) study "...a non-equilibrium reaction at the

contact face between solid A1 and an In-rich Al-In alloy produc-

ing a layer of another Al-rich equilibrium phase whose thickness

gives information about diffusion coefficients." (4, p. 339)

During the Spacelab D1 mission, several Al-In immiscible alloy

samples of different compositions were processed using the

Isothermal Heating Facility. However, the experiment "...failed

almost completely due to a malfunction of the thermocouples such

that the samples were overheated above a critical temperature.

It was therefore impossible to study Ostwald ripening and compare

it with the theories worked out during the preparation of this

experiment for the Dl-mission. One sample show[ed] strong coars-

ening, probably due to collisions and coagulation, whereas all

other[s] exhibit massive separation into two liquids. Although

our single D1 experiment on Ostwald ripening _ailed, the experi-
ment as a whole (including ground based theoretical and ex-

perimental research in the pre- and post-mission phase) was a

step forward to a better understanding of separation processes of

immiscible liquid alloys." (i, p. 43)
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(Reference (4) contains a discussion of the theoretical work for
this experiment.)

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-
loys, Monotectic Compositions, Metallic Matrix, Binary Systems,
Melt and Solidification, Drops, Phase Separation, Metallic Dis-
persion, Homogeneous Dispersion, Liquid/Liquid Dispersion,
Liquid/Liquid Interface, Particle Dispersion, Stability of Dis-
persions, Ostwald Ripening, Particle Coarsening, Coagulation,

Droplet Collision, Drop Migration, Particle Migration, Nuclea-

tion, Separation of Components, Liquid Demixing, Diffusive Mass

Transfer, Diffusion Coefficient, Solid/Liquid Interface, Inter-

face Physics, Interface Phenomena, Grain Boundaries, Thermal En-

vironment More Extreme Than Predicted, Hardware Malfunction,

Processing Difficulties

Number of Samples: unknown, possibly four

Sample Materials: Al-In alloys of various compositions

(Al*In*)

Container Materials: graphite within a tantalum sheath

(Ta*, C*)

Experiment/Material Applications:

No discussion of the material application could be located in the

published literature.

References/Applicable Publications:

(I) Ratke, L., Thieringer, W. K., and Fischmeister, H.: Coars-

ening of Immiscible Liquid Alloys by Ostwald Ripening. In

BMFT/DFVLR Scientific Results of the German Spacelab Mission D1,

Abstracts of the D1-Symposium, Norderney, Germany, August 27-29,

1986, pp. 42-44. (post-flight results; abstract only)

(2) Fischmeister, H. F., Ratke, L., and Thieringer, W.: Ostwald

Ripenning in Metallic Melts. In Scientific Goals of the German

Spacelab Mission DI, WPF, 1985, pp. 145-146. (preflight)
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(3) Whittmann, K.: The Isothermal Heating Facility. In ESA 5th

European Symposium on Material Sciences Under Microgravity,

Results of Spacelab i, Schloss Elmau, November 5-7, 1984, ESA SP-

222, pp. 49-54. (published post-Spacelab 1 but prior to DI)

(4) Ratke, L., Thieringer, W. K., and Fischmeister, H.: Coars-

ening of Immiscible Liquid Alloys by Ostwald Ripening. In

Proceedings of the Norderney Symposium on Scientific Results of

the German Spacelab Mission DI, Norderney, Germany, August 27-29,

1986, pp. 332-341 (specifically pp. 339-340). (post-flight)

(5) Hamacher, H., Merbold, U., and Jilg, R.: Analysis of

Microgravity Measurements Performed During DI. In Proceedings of
the Norderney Symposium on Scientific Results of the German

Spacelab Mission DI, Norderney, Germany, August 27-29, 1986.

(acceleration measurements on DI)

Contact(s):

Prof. Dr. H. Fischmeister

Max-Planck-Institut fur Metallforschung
Institut fur Werkstoffwissenschaften

Seestr. 92

D-7000 Stuttgart 80

Germany
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Principal Investigator(s): Ei-Faer, M. L. (i), Asar, H. K. (2)

Co-Investigator(s}: Unknown

Affiliation(s}: (1) Department of Chemistry, King Fahd University

of Petroleum & Minerals, Dhahran, Saudi Arabia; (2) Research In-

stitute, King Fahd University of Petroleum & Minerals, Dhahran,

Saudi Arabia

Experiment Origin: Saudi Arabia

Mission: STS Launch #18, STS-025 (STS 51-G, Discovery)

Launch Date/Expt. Date: June 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Middeck Experiment

Processing Facility: Phase Separation Experiment (PSE) Hardware

(a 5 x 4 x 1-inch hand-held apparatus containing 15 separation

chambers )

Builder of Processing Facility: Developed at the National

Aeronautics and Space Administration (NASA), Marshall Space

Flight Center, Huntsville, Alabama

Experiment:

Phase Separation Experiment (PSE)

The objective of this STS 51-G experiment was to study the low-

gravity mixing and subsequent separation of several immiscible-

liquid two-phase systems.

Prior to the mission, 15 experiment chambers, configured within a

hand-held, transparent Plexiglas _M container, were filled with

various two-phase systems. An orange, green, or blue dye was

added to at least one fluid in most of the chambers to enhance

photographic resolution of the separation. (The contents of each

chamber can be found in the Sample Materials section below.)

Reportedly, the specific liquid systems were selected to il-

lustrate "...the effects of a number of... variables such as den-

sity, interfacial tension, viscosity, and composition..." (4, p.

356) on the separation process.

Chambers 1 through 5 of the experimental apparatus were double

walled: the inner wall a glass cuvette of 1.38 ml volume, the

outer wall a Plexiglas TM chamber. Chambers 6 through 15 were

single-walled Plexiglas TM chambers of 3.46 ml volume. Each cham-

ber was equipped with a small metal ball or glass mixing bead(s).

During the mission, the 15-chambered apparatus was removed from

storage, mounted in front of a light source, and photographed.

(Each photograph showed all 15 chambers.) The apparatus was then
removed from the mount and shaken by the Payload Specialist. The

steel balls and glass beads in the chambers facilitated the

mixing of the two fluid phases. After mixing, the container was
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re-mounted in front of the light source and the subsequent demix-
ing of the fluids photographed. During the first 2 minutes (after
shaking) one photograph was taken every 15 seconds; during the
next I0 minutes, one picture was taken every minute. Two hours
later, the undisturbed apparatus was photographed again.

It appears from Reference (4) that the experiment sequence
(mounting, shaking, remounting, and filming) was performed four
times on the mission with the single 15-chamber apparatus. Color
pictures of the apparatus at different times during the experi-
ment can be viewed in Reference (4).

After post-flight examination of the flight photographs it was
reported "that the mixing is accompanied by a noticeable emul-
sification of the chamber's components. The mixing appears,
however, to be inadequate in the top row as compared to... [other
chambers]. This seems to be due to the fact that glass mixing
balls were used and they were not dense enough to mix the phases
in low-gravity ....

"The phases in chambers 1,4,6,7,9,10,11, and 15 appear to be well
mixed .... The phases in chambers 3,8,12, and 13 are moderately
mixed and the contents in chambers 2 and 5 are not mixed ....
<Note: although not stated at this point but briefly alluded to
later, it appears that the contents of chamber 14 also mixed
well.> It is obvious from the pictures that... [generally],
glass mixing balls proved inadequate to mix the phases having
high interfacial tension .... [C]hambers 2 and 8 both contained
hexadeca_ and distilled water but chamber 8... [had] a
Plexiglas _*" wall and a steel ball rather than a glass wall and a
glass ball as in chamber 2. Chamber 8 showed little emulsifica-

tion and some reforming of two phases whereas Chamber 2 showed

some initial coalescence of the hexadecane-water system; but

generally they did not mix. This may be due to high interfacial

tension and the lack of polar impurities (surfactants) in the

hexadecane-water system. This explanation is further supported

by the observation of chambers 9 and i0. The contents in these

chambers contained a surfactant detergent (chamber 9) and saline

water (chamber I0). They emulsified easily and stayed emul-

sified. This behavior is attributed to the ability of surfac-

tants to lower interfacial tension in these airless liquid-liquid

two-phase systems.

"Some air bubbles were observed in a few cham_ers. Also, in the

absence of gravity instead of layer formation, droplet fusion oc-

curred, forming ever growing regions of each phase." (4, pp. 359-

360) <Note: It is assumed that the preceding sentence means that

rather than the phases separating into layers, a droplet of one

phase occurred, with slow diffusion of the other phase into this
drop.>
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The phase separation behavior of the STS 51-G experiment was com-

pared to separation behavior observed during similar experiments

performed on Earth. <Note: Reference (4) did not always specifi-

cally state the observed behavior of the terrestrial system, but

instead, detailed the results of the flight experiment.> The

following was reported (Reference (4)):

<Note: See the Sample Materials section for the contents of each

chamber.>

Chamber i: The nickel precipitate stayed mixed in low-gravity and

particles did not aggregate.
Chamber 2: the hexadecane-distilled water system showed some ini-

tial coalescence, but generally did not mix.

Chambers 3, 4, and 5: The fluorinated Krytox oil in these cham-

bers is denser than the second phase, water. The contents in

chambers 3 and 4 mixed slightly, but the contents in chamber 5

did not.

Chambers 6 and 7: On Earth, phases in both chambers separated

well. In space, the phase in chamber 6 remained as an emulsion.

The phases in chamber 7 formed a fairly stable emulsion after

mixing but had separated 2 hours later.
Chamber 8: The results from this chamber were discussed above.

Chamber 9: A detergent additive to the contents of this chamber

(hexadecane and distilled water) allowed the study of the effect

of detergent on the interfacial tension of a liquid-liquid sys-

tem. On Earth, the system demonstrated good separation; in

space, the system remained emulsified.

Chamber i0: The hexadecane/saline-water solution remained emul-

sified in space.

Chambers ii and 12 : These chambers contained equal volumes of

gas-oil/distilled water as in chamber 7 but different amounts of

glass beads (to create difference surface areas). The phases in

both chambers separated in space prior to mixing (the beads in

oil). When mixed, an emulsion formed, which slowly "cleared."

Chamber 13 : This chamber illustrated that the employed

hexadecane/water solution is more difficult to emulsify than gas-

oil/water.
Chamber 14 : A stable emulsion formed in this hexadecane-water

system with detergent additive.

<Note: Reference (4) which was provided by the Principal Inves-

tigator, was missing page 366, the page which detailed the

results of the capillary wetting experiment of chamber 15 as well

as other pertinent information. Efforts are being made to secure

this missing page.>

It was concluded that in the absence of gravity, "...phase

separation depends largely on interfacial tension and mixing ef-

ficiency. For example the emulsions of oil-saline water
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(chambers 6 and 7) remained mixed for a long time... [in]

microgravity, at one gravity the two phases separated easily.
Similarly, when the surfactant was used to lower interfacial ten-

sion, stable emulsions were formed at microgravity (chamber 9),
although at one gravity both hexadecane and distilled water

showed good separation." (4, p. 367)

Recommendations concerning future phase separation experiments

included the following: (i) using video photography to provide a

continuous record of phase behavior coupled with time lapse

documentation, (2) improving the experimental apparatus which was

"inadequate to obtain clear data, especially when capillary

studies... [were] involved." (i, p. 20), and (3) improving the

fluid mixing within the experimental apparatus.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Binary Systems, Ternary Systems, Transparent Liquids,

Liquid Mixing, Stirring of Components, Emulsion, Dispersion,

Liquid/Liquid Dispersion, Droplet Dispersion, Particle Growth,

Particle Dispersion, Stability of Dispersions, Drops, Drop

Coalescence, Particle Aggregation, Liquid Demixing, Separation of

Components, Phase Separation, Phase Partitioning, Two-Phase Sys-

tem, Liquid/Liquid Interface, Liquid/Gas Interface, Bubbles,

Capillary Forces, Wetting, Surface Tension, Interfacial Tension,

Viscosity, Surfactants, Diffusive Mass Transfer, Density Dif-

ference, Contained Fluids, Illumination System

Number of Samples: fifteen

Sample Materials: The following materials were reported

(Reference (4)):

Chamber 1 (nickel precipitate experiment): one volume each of a

water-ethanol system containing 0.55 M alpha furil dioxine, 0.25

M nickel chloride plus 0.5% v/v sodium hydroxide and one large
glass mixing ball.

Chamber 2: One volume each of hexadecane-distilled water and one

large glass mixing ball.

Chamber 3: One volume each of Krytox oil-distilled water and one

large glass mixing ball.

Chamber 4: One volume/3 volumes Krytox oil-distilled water and

one large glass mixing ball.

Chamber 5: Three volumes/l volume Krytox oil-distilled water and

one large glass mixing ball.

Chamber 6: One volume each of gas-oil - saline water and one

stainless steel mixing ball.

Chamber 7: One volume each of gas-oil - distilled water and one
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stainless steel ball.
Chamber 8: One volume each of hexadecane-distilled water and one
stainless steel ball.
Chamber 9: One volume each of hexadecane-distilled water contain-

ing 0.4% w/w Igebal CO-710 detergent and one stainless steel

ball.

Chamber i0: One volume each of hexadecane-saline water and one

stainless steel ball.

Chamber ii: 1.23 ml each of gas-oil - distilled water and 2.2 g

(I ml) of medium glass beads.

Chamber 12: As in chamber Ii but small glass beads were used.

Chamber 13: As in chamber ii but hexadecane used instead of gas-
oil.

Chamber 14: As in chamber 13 but water contains Igebal detergent

as in chamber 9.

Chamber 15: 0.86 ml. of green dyed water (25% of chamber volume)

in a chamber containing (filled) with 28 large glass beads oc-

cupying approx. 1.75 ml = 50% of the chamber volume.

"Hexadecane, gas-oil, and Krytox oil were stained with Sudan

Orange (0.i mg/ml). The water in chamber 15 was stained with 1%

w/w Methyl Green and in chambers 3,4, and 5 with Trypan Blue (0.i

mg/ml).

Other details of the materials can be found in Reference (i).

Contalner Materials: Cha_ers 1-5: glass enclosed in PlexiglasTM;
chambers 6-15: Plexiglas

Experiment/Material Applications:

Although it was not stated in the available references, it is

suspected that these experiments were initiated to study the pos-

sibility of producing improved alloys or semiconductors from im-
miscible materials.

References/Applicable Publications:

(i) Dabbagh, A. E.: STS 51-G Post Mission Report of Saudi Arabian

Payload Specialists and Arabsat Scientific Experiments Team.

Arabsat Scientific Experiments Project, July 1985, p. 20. (post-

flight)

(2) NASA Space Shuttle Mission 51-G Press Kit, June 1985, p. 15.

(preflight)
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(3) Input received from Principal Investigator M. Z.
June 1991.

Ei-Faer,

(4) Ei-Faer, M. Z., Ali, M. F., Asar, H. K., and Ai-Saud, I. S.:

Phase Separation in Microgravity Evaluation of Arabsat Phase

Separation Experiment Results. In The Arabian Journal for

Science and Engineering, Volume 13, No. 3. (post-flight)

Contact(s):

Dr. Mohammed L. Ei-Faer or Dr. Hamza K. Asar

KFUPM Box No. 138

King Fahd University of Petroleum and Minerals

Dhahran 31261

Kingdom of Saudi Arabia
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Principal Investigator(s): Langbein, D. (i)

Co-Investigator(s): Heide, W. (2)

Affiliation(s): (1,2) Battelle-Institute, Frankfurt, Germany

Experiment origin: Federal Republic of Germany

Mission: STS Launch #22, STS-030 (STS 61-A, Spacelab DI:

Challenger)

Launch Date/Expt. Date: October 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility, Materials Science Double

Rack (MSDR)

Processing Facility: Fluid Physics Module (FPM) (same facility

as the FPM of Spacelab 1 but with improvements)

Builder of Processing Facility: FIAT Centro Ricerche, Italy

Experiment:

Mixinq and Demixinq of Transparent Liquids (Run A and B) - the

additional effects of a free surface on mixinq and demixinq (WL-

FPM-03)

This Spacelab D1 experiment was the fifth in a series of inves-

tigations designed by Langbein and/or Heide et al. to study the

behavior of immiscible systems under low-gravity conditions (see

Heide, TEXUS 5, TEXUS 7, TEXUS 8, TEXUS 9 (all in this chapter)).

The specific objective of the experiment was to examine the fluid

mechanisms operating during the mixing and demixing of binary

transparent liquids exhibiting a miscibility gap. Such liquid

systems are used as models for metallic alloys whose compounds

separate during solidification.

The experiment was performed in a closed liquid container at-

tached to the Spacelab D1 Fluid Physics Module (FPM). The con-

tainer held two concave, aluminum disks, between which a

cylindrical column could be formed. Because the test liquid

(benzylbenzoate and paraffin oil) had a low contact angle with

aluminum, the disks had sharp edges and were surrounded by teflon

rings. The front disk contained a heater redundantly controlled

by two thermistors.

During the first part of the experiment procedure, the liquid

column was formed by injecting test liquid through a hole in one

of the disks and, simultaneously, separating the disks by

"...rear plate rotation of the FPM." (4, p. 118) The front disc

was then heated and maintained at the desired temperature. The

liquid was cooled by passive radiation and conduction.

Although initially only one experimental run had been planned,

two experimental runs were performed during the mission.
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During Run A, buildup of the liquid column took approximately i0

minutes. The front disk was then heated to approximately 60 °C.

Reportedly, because of "...liquid mixture spread[ing] across the

teflon rings surrounding the supporting metallic disks, the

column obtained formed an unduloid rather than a cylinder." (9,

p. 325) The 60 °C temperature was maintained for approximately

22 minutes. Passive cooling was then allowed to occur. During

the first 46 minutes of the experiment, a TV downlink allowed in-

teraction between the Payload Specialist and ground. For ap-

proximately i0 minutes after the TV downlink was halted, a Vinten

camera recorded the behavior of the liquid column. The recording
was then halted until the liquid was sucked back into the reser-

voir.

Because of the "successful" performance of the first experimental

run, a second experiment (Run B) was performed. The procedure

was the same as Run A except that (i) the heater temperature was

increased to 75 °C (to increase the Marangoni velocity and dis-

tinguish between reproducible and irreproducible phenomena) and

(2) "...only the last seconds of the heating phase, the cooling

phase and the recovery of the column [were] recorded." (9, p.
326)

The conclusions from both experimental runs were reported as
follows:

(i) The mechanisms of capillarity, stability, and spreading are

significant during the mixing and demixing of fluids exhibiting a

miscibility gap. These mechanisms control the final distribution

of the two components.

(2) Marangoni convection caused by non-uniform heating and cool-

ing was lower than expected. The convection differed by at least

one order of magnitude from that determined by ground experi-

ments. This difference was attributed to (a) contamination of

the liquid mixture from long periods of storage and/or (b)

"...contrasting effects of temperature and concentration on the

surface tension due to the component having the lower surface

tension (paraffin oil) getting enriched on the cold side." (9, p.

327) If the difference in Marangoni convection can be ascribed

to (b), "...the advantage of a free fluid surface, the suppres-

sion of heterogeneous nucleation, will not generally be balanced

by the disadvantage of stronger Marangoni convection. In that

case containerless processing appears commendable also for metal-

lic alloys." (9, p. 327) <Note: This point, as written, was not
clear to the editors.>

(3) Slow cooling reduced the demixing of the two liquids, sug-

gesting this result may also be true for metallic alloys.
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(4) The diffuse interface layer between the two liquids that
mixed exhibited properties of normal interfaces (e.g., capil-
larity, stability, spreading effects and Marangoni convection).

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Binary Systems, Phase Separation, Transparent Liquids,

Model Materials, Liquid Columns, Liquid Bridges, Liquid Bridge

Stability, Liquid Stability, Liquid/Liquid Interface,

Liquid/Liquid Dispersion, Liquid Mixing, Liquid Demixing, Separa-

tion of Components, Free Surface, Surface Tension, Contact Angle,

Liquid Spreading, Capillary Forces, Meniscus Shape, Free Surface

Shape, Thermocapillary Convection, Marangoni Convection, Thermo-

solutal Convection, Solutal Gradients, Nucleation, Heterogeneous

Nucleation, Thermal Gradient, Wetting, Liquid Expulsion Through a

Small Orifice, Liquid Transfer, Passive Cooling, Radiative Cool-

ing, Conduction, Cooling Rate, Contamination Source, Deteriora-

tion of Loaded Samples Prior to Launch, Containerless Processing

Applications

Number of Samples: two experiment runs

Sample Materials: Nontoxic paraffin oil/benzylbenzoate (interface

tensions and contact angles are given in the available

publications) ; critical temperature: 61 °C; flammability

temperature: 93 °C.

Container Materials: Not applicable. Free surface liquid bridge
was formed between two aluminum disks.

(AI*)

Experiment/Material Applications :

The liquid system (cyclohexane/methanol) used during the TEXUS

experiments (see Heide, TEXUS 7; Heide, TEXUS 9) could not be

employed for this experiment because of safety precautions

(toxicity, flammability) . Therefore, the model system

benzylbenzoate/paraffin oil was used.
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Contact (s) :

Prof. Dr. D. Langbein

Battelle Institut e.V.

Am Romerhof 35

Postfach 90 01 60

D-6000 Frankfurt/Main 90

Germany
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Principal Investigator(s): Bach, H. (i), Methfessel, S. (2)

Co-Investigator(s): Sprenger, S. (3)

Affiliatlon(s): (1-3) Institut fur Experimentalphysik (VI), Ruhr-

Universit_t Bochum, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 13

Launch Date/Expt. Date: April 1986

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Isothermal Heating Furnace

The experiment module was equipped with a total of four furnaces,

two of which were used for this study. <Note: While the Prin-

cipal Investigator reported that the module designation was TEM

01-2, Reference (6) indicates that the module designation was

TEM 01-I.>

Builder of Processing Facility: ERNO Raumfahrttechnik GmbH, Ger-

many

Experiment:

Separation in Monotectics of Lanthanide Elements Under

Microqravity (Rare Earth Studies 1 & 2)

Many monotectics have already been investigated in space and on

Earth, but the influence of the physico-chemical parameters

(e.g., atomic volume, heat of evaporation) and kinetic parameters

(e.g., gravity, Marangoni convection) on the segregation behavior

is not well understood. Because atomic properties of the lan-

thanide elements change continuously, they are suitable for ex-

amining the physico-chemical properties. While mixing of

trivalent lanthanides is possible, alloying between trivalent and

bivalent lanthanides results in wide mixing gaps. Further,

"...bivalent Lanthanides-- under adequate pressure, at high tem-

peratures.., can change into the trivalent state during alloy-

ing.., and can then be mixed completely with other trivalent Lan-

thanides and related d I elements." (i, p. 18, translated)

This TEXUS 13 experiment was designed to determine if the Eu-La

system (which exhibits a miscibility gap in the liquid phase)

would result in a finely dispersed alloy in a low-gravity en-

vironment. (Both width and size of the miscibility gap can be

varied over a wide range by a "suited selection" of the alloying

elements.) Theorists predicted a critical solution temperature

for the Eu-La system to be between 800 and 4700 K. Reportedly,

Bach et al. determined the critical solution temperature

(experimentally) to be 1235 K (as reported in Reference (7)).

<Note: it appears from Reference (6) that the temperature was ex-

perimentally determined in the l-g environment.>
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Just prior to the launch of the rocket, six samples (of five dif-

ferent compositions within the miscibility gap) were heated above

their critical temperature at a rate of 1 K/s to 1400 °C. (See

the Sample Materials section below for a description of each of

the five compositions.) During the flight, the samples were

quenched at a rate of 9.36 K/s. <Note: The length of time the

samples were held at 1400 °C was not detailed.>

The low-gravity samples were evaluated using raster electron

microscopy and energy dispersive X-ray techniques and then com-

pared to Earth-processed reference samples. Reportedly, "For all

5 concentrations we found a clear separation in an enriched phase

of Eu and in a homogeneous phase of Eu20La80 under l-g.., as well
as under microgravity. No finely dispersed solution was ob-
served ....

"Under microgravity the melts with concentrations of Eu26La74 and

Eu30La70 remained on the bottom of the crucibles. The melts with

concentrations of Eu40La60 , Eu60La40 , and Eu65La35 were also
found on the top of the crucibles dependent on-the-interfacial

tension between crucible and melt which is influenced by the Eu
concentration ....

"During quenching the crucible wall is cooler than the sample.

Therefore the higher melting alloy enriched with La goes to the

wall. Small particles of the enriched phase of La are in-

homogeneously distributed in the enriched phase of Eu. A free

surface or an inhomogeneous temperature profile may cause

transport mechanisms (interface convection) which explain this

observed inhomogeneous distribution ....

"Under 1 g condition the enriched phase of La was found on the

bottom of the crucible because of its higher density. Small par-

ticles of the enriched phase of La are nearly homogeneously dis-

tributed in the enriched phase of Eu." (4, p. 6)

It was concluded that the separation is mainly governed by the

differences in interfacical tension and viscosity of the com-

ponents. Reportedly, therefore, the investigators intend to

measure the dependence of these parameters on temperature and

concentration in the ternary system Eu-La-Sm.

A more detailed discussion of the experiment can be found in

Reference (8).
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Monotectic Compositions, Rare Earth Alloys, Dispersion Al-

loys, Metallic Matrix, Binary Systems, Model Materials, Melt and

Solidification, Phase Separation, Liquid/Liquid Dispersion,

Homogeneous Dispersion, Liquid/Liquid Interface, Particle Motion,

Segregation, Density Difference, Separation of Components, Free

Surface, Interfacial Tension, Marangoni Convection, Viscosity,

Thermal Gradient, Solid/Liquid Interface, Quench Process, Wetting

of Container, Crucible Effects, Material Interaction With Con-

tainment Facility

Number of Samples: Six samples of five different compositions.

Sample Materials: Rare Earth alloys of Eu26La74 , Eu30La70 ,

Eu40La60 , Eu60La40 , and Eu65La35.
(Eu*La*)

Container Materlals: Molybdenum alloy (TZM)

(Mo*)

Experiment/Material Applications:

The investigators regard the lanthanide elements as a metallic

model system to better understand the separation behavior in

monotectics. It is their goal to determine under what conditions

finely dispersed solutions with new or improved properties can be

prepared in the space environment.

References/Applicable Publications:

(i) Sprenger, S., Bach, H., and Methfessel, S.: Entmischungsver-

halten der Seltenen Erden unter _g- und l-g Bedingungen. In

BMFT/DFVLR TEXUS 13-16 Abschlussberict, 1988, pp. 18-22. (post-

flight; in German)

(2) Huser, D., Romer, R., Bach. H., and Methfessel, S.: Bestimung

des Phasendiagramms bon Lal_xEU x f_r Experimente unter Mik-
rogravitation. Verhandl. DPG (VI) 21, 1328 (1986).

(3) Sprenger, S., Bach, H., and Methfessel, S.: Entmischungsver-

halten des Systems La-Eu auf der Erde und unter Mikrogravitation.

Verhandl. DPG (VII) 22, M-12.3 (1987).

(4) Bach, H., H_ser, D., Methfessel, S., Abd-Elmeguid, M. M., and

Sprenger, S.: The Monotectic System Eu-La under l-g and Low

Gravity Condition. (post-flight) <Note: The publication status
of this document is unclear at this time.>
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(5) Bach, H.: Separation in Monotectics of Lanthanide Elements

Under Microgravity. COSPAR Landesbericht, 1988. (post-flight)

(6) Experiment-Modul TEM 01-I. In BMFT/DFVLR TEXUS 13-16

Abschlussbericht, 1988, p. 17. (processing facility; in German)

(7) Input received from Principal Investigator H. Bach, June

1988.

(8) Sprenger, S., Bach, H., and Methfessel, S.: Segregation Be-

haviour of Rare Earths Under Microgravity and Normal Gravity Con-

ditions. In Summary Review of Sounding Rocket Experiments in

Fluid Science and Materials Sciences, ESA SP-II32, February 1991,

pp. 228-233. (post-flight)

Contact(s):

Dr. U. Bach

Ruhr-Universitat Bochum

Institut fur Experimentalphysik (VI)

Postfach 102148

D-4630 Bochum 1

Germany
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Principal Investlgator(s): Togano, K. (1)

Co-Investigator(s): Yoshida, Y. (2), Nii, K. (3), Tachikawa, K.
(4)

Affiliation(s): (1-3) National Research Institute for Metals,

(NRIM), Tsukuba Laboratories, Ibaraki, Japan; (4) During TEXUS

13: National Research Institute for Metals, Tokyo, Japan,

Currently: Tokai University, Hiratsuka, Kanagawa, Japan

Experiment Origin: Japan
Mission: TEXUS 13

Launch Date/Expt. Date: April 1986

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01: Isothermal

four-chamber furnace. (Only one of the chambers was employed for
this experiment.)

Builder of Processing Facility: ERNO Raumfahrttecnik GmbH,
Bremen, Germany

Experiment:

Fabrication of Superconductinq Materials

This TEXUS 13 experiment was designed to study the solidification

of an Al-Pb-Bi monotectic alloy. The experiment, which explored

the fabrication of superconducting materials, was a preliminary

investigation performed prior to, and in support of, the First

Materials Processing Test of Japan (FMPT). <Note: The FMPT

(equipped with Togano's experiments) later flew on the U.S.

shuttle during Spacelab J, in 1992.>

Prior to the rocket launch, an 8.7 mm diameter, 14 mm long AI-

6.8 wt.% Pb-6.8 wt.% Bi alloy was configured within a boron-
nitride crucible and preheated to 1200 _C. During the low-

gravity phase of the mission, the alloy was solidified.

Post-flight, the TEXUS sample was compared to an Earth-processed

sample, heat-treated in the same furnace with the same

temperature-time profile. Reportedly, a significant difference

in microstructure was observed between Earth-and-flight processed

alloys. In the earth-processed alloy, most of the Pb-Bi par-

ticles condensed at the bottom of the crucible, indicating that

gravity-induced segregation had occurred. In contrast, the

flight sample had a much more homogeneous distribution of Pb-Bi

alloy particles in the A1 matrix. However, there was non-

uniformity in size distribution of of Pb-Bi particles in the

flight sample; larger particles existed in the upper part of the

solidified alloy. Reportedly, this non-uniformity was most

likely caused by the migration of Pb-Bi particles along the tem-

perature gradient during the cooling process.

17-214



Few additional details concerning this experiment could be lo-
cated at this time.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Superconductors, Superconductivity, Monotectic Composi-

tions, Ternary Systems, Melt and Solidification, Metallic Matrix,

Density Difference, Segregation, Separation of Components, Phase

Separation, Homogeneous Dispersion, Liquid/Liquid Dispersion,

Particle Dispersion, Liquid/Liquid Interface, Solid/Liquid Inter-

face, Marangoni Movement of Droplets, Sample Microstructure, Par-

ticle Size Distribution, Particle Migration

Number of Samples: one

Sample Materials: AI-6.8 wt.% Pb-6.8 wt.% Bi

(Al*Pb*Bi*)

Container Materials: boron nitride crucible contained within a

nickel cartridge

(B'N*)

Experiment/Material Applications:

The production of new superconducting materials is investigated

in the low-gravity environment where more homogeneous dispersions

of an alloy into a metal matrix are expected.

References/Applicable Publications :

(i) Togano, K., Yoshida, Y., Tachikawa, K., and Nii, K. : The

Solidification of Superconducting AI-Pb-Bi Alloys Under

Microgravity. In BMFT/DFVLR TEXUS 13-16 Abschlussbericht, 1988,

pp. 23-26. (in German; post-flight)

(2) Ratke, L.: Immiscible Alloys Under Microgravity Conditions.

(discusses TEXUS 13 results) <Note: The publication status of

this document is unclear at this time. Reportedly, the document

was to be published in Advances In Space Research.>

(3) Togano, K., Yoshida, Y., Tachikawa, K., and Nii, K.: Studies

on the Solidification of Superconducting Al-Pb-Bi Alloy Under

Microgravity-Results of the TEXUS 13 Mission. In Space 1986, Oc-

tober 16-17, 1986. (post-flight)

17-215



(4) Input received from Experiment Investigator, August 1989.

(5) Solidification of an AI-Pb-Bi Alloy Under Microgravity. In

Summary Review of Sounding Rocket Experiments in Fluid Science

and Materials Sciences, ESA SP-I132, February 1991, pp. 274-277.

(post-flight)

Contact(s):

Dr. Kazumasa Togano
National Research Institute for Metals

1-2-1, Sengen, Tsukuba-City

Ibaraki 305

Japan
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Principal Investigator(s): Passerone, A. (i), Rossitto, F. (2)

Co-Investigator(s): Sangiorgi, R. (3)

Affiliation(s): (1,3) Ist. di Chimica Fisica Applicata dei

Materiali, Consiglio Nazionale delle Ricerche (CNR), Genova,

Italy; (2) During MASER i: CIRS, Politecnico di Milano, Milano,

Italy, Currently: EAC <Note: Further information on 'EAC" was

not provided (see Contact(s) section below).>

Experiment Origin: Italy
Mission: MASER 1

Launch Date/Expt. Date: March 1987

Launched From: Esrange, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: One high precision isothermal furnace housed

within the Multi Mission Mirror Furnace Module (M4)

Builder of Processing Facility: SAAB Space, Sweden, and Swedish

Space Corporation, Solna, Sweden

Experiment:

Meniscus Stability in Immiscibles

"A [cited] theoretical model.., predicts that liquid bridges

formed in m_crogravity by immiscible metals are stable as long as

the ratio L_/V (L: length and V: volume of the bridge) is kept

below a critical value which depends on the wetting angle of the

interface on the support plates." (11, p. 278)

This MASER 1 experiment was designed to investigate the stability

of liquid bridges formed by two immiscible Zn-Bi fluids. The

specific objectives of the research included (i) verifying

theoretical stability criteria for (two-liquid) immiscible fluid

bridges during the low-gravity phase of the rocket, (2) observing

the wetting behavior and measuring the contact angles of a metal-

lic liquid-liquid interface in contact with support plates, and

(3) verifying the technical setup of the experiment (which was to

be used for other investigations as well).

Five experiment cells were prepared prior to launch and then

loaded into one stainless steel sample cartridge. Each cell con-

tained a cylindrical rod of conjugated Zn-Bi (approximately 83

wt.% Bi), vacuum melted and cast axially between two similarly

sized cylindrical rods of nearly monotectic Zn-Bi (approximately

5 wt.% Bi). The composite rod was then placed between two sup-

port plates such that the longitudinal axis of the rod paralleled

the longitudinal axes of the plates. Thus, the plates were in

contact with both types of Zn-Bi molten liquids during the ex-

perimentation. <Note: A figure detailing the experiment cells can

be found in several of the references below (e.g. Reference (ii),

p. 279)> (See the Sample Materials section below for a detailing
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of the five alloy/plate combinations.) The distance between the

plates was chosen (based on theoretical calculations) such that

three of the cells should have a stable liquid bridge configura-

tion, and two of the cells should have an unstable configuration.

The sample cartridge was placed into a high precision isothermal

furnace located within the Multi-Mission Mirror Furnace Module

(M4). Three mirror arrays and 30 halogen lamps were configured

within the furnace to produce the desired isothermal temperature

distribution on the cartridge. Several thermocouples measured

the thermal distribution during processing.

Prior to the rocket launch, the cartridge was heated and stabi-

lized to 410 °C. <Note: It appears that this action melted the

middle cylindrical rod in each of the five samples.> During the

low-gravity phase of the mission, the samples were heated to 430

°C. <Note: It appears that this action resulted in the complete

melting of the samples.> The temperature stabilized at this

value for the next 300 seconds. The sample was then cooled (via
nitrogen gas) to 400 °C 70 seconds before the onset of the

rocket-reentry phase. (The principal thermocouple read 380 °C at

the onset of the reentry phase.)

Reportedly, the high-precision isothermal M4 furnace "worked very

well" and the technical setup used for this experiment was

verified. Metallographic examinations of the five cells were

presented and some of the observations are detailed here:

"[Generally, in the rocket experimental cells].., some voids are

present in specific locations, namely in the central upper part

of the cells. This could be due to volume contraction of the Bi-

rich phase which had to melt under l-g conditions, before launch.

Similarly, on cooling, the Zn-rich phase contracted during

solidification, leaving some room to the Bi-rich phase, still

liquid, to penetrate along the ceramic-metal interface giving

rise to a pseudo-wetting pattern.

"A homogeneous distribution of Zn needles is seen inside the Bi-

rich phase, in all the cells, with no segregation, at variance

with ground reference samples." (2, p. 65)

"The trace of a nearly perfect liquid bridge between two silica

plates could be observed... [in cell number 2]. This was con-

sidered as the first experimental evidence of the possibility to

form stable liquid bridges in immiscible metals. However, the

bridge profiles were disturbed on cooling and cannot be reliably

compared to computed ones." (ii, p. 278)

As expected, three of the cells were stable while the remaining
two were not, verifying the theoretical estimations of the

stability of the bridges. "The stable cells maintained a nearly
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axial symmetry whereas... [the unstable cells] appear disturbed
and shifted towards the crucible lateral wall." (2, p. 65) It

was also noted that the liquid bridges were very sensitive to

residual accelerations.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Binary Systems, Metallic Matrix, Monotectic Compositions,

Melt and Solidification, Isothermal Processing, Liquid Bridges,

Liquid Bridge Stability, Liquid Stability, Meniscus Shape, Menis-

cus Stability, Liquid/Liquid Interface, Phase Separation,

Liquid/Liquid Dispersion, Homogeneous Dispersion, Segregation,

Capillary Forces, Wetting, Contact Angle, Solid/Liquid Interface,

Needles, Voids, Sample Microstructure, Volume Change, Accelera-

tion Effects, Halogen Lamps

Number of Samples: five

Sample Materials: Cell #i: Zn-Bi alloy/two vitreous silica

ceramic plates (the distance between the plates corresponded to

an unstable system). Cell #2: Zn-Bi alloy/two vitreous silica

plates (the distance between the plates corresponded to a stable

system). Cell #3: Zn-Bi alloy/two boron nitride plates (the dis-

tance between the plates corresponded to a stable system). Cell

#4: Zn-Bi alloy/two graphite plates (the distance between the

plates corresponded to a stable system). Cell #5: Zn-Bi

alloy/two graphite plates (the distance between the plates cor-

responded to an unstable system). <Note: See Experiment summary

above for more information.>

(Zn*Bi*)
Container Materials: Stainless steel (see also the Sample

Materials section above for plate materials).

Experiment/Material Applications:

This experiment has applications in both materials processing and

fluids research areas. For example, "Many phenomena, such as liq-

uid phase sintering processes, separation of immiscible al-

loys,... [crystal growth] from molten phases and technical

measurements like interfacial energy determination, are strongly

related to the shape and stability of the liquid meniscus which

sets up between the liquid phases and the solid supports." (5, p.

91)
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References/Applicable Publications:

(i) Zaar, J. and Anggard, K.: MASER and Its Effectiveness and Ex-

perimental Results. In: In Space '87, October 13-14, 1987, Japan

Space Utilization Promotion Center (JSUP), 32 pp. (post-flight;

short description)

(2) Passerone, A., Rossitto, F., and Sangiorgi, R. : Meniscus

Stability in Immiscible Metals-MASER 1 Experiment. Applied

Microgravity Technology, i, 1988, pp. 62-66. (post-flight)

(3) Rossitto, F., Passerone, A., Sangiorgi, R., and Minisini, R.:

Liquid Bridges Formed by Immiscible Metals-A Sounding Rocket Ex-

periment. In Proc. 6th European Symposium on Material Sciences

Under Microgravity Conditions, Bordeaux, France, December 2-5,

1986, pp. 215-220, ESA SP-256. (preflight)
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of Sintered AIN by Liquid A1 and In. Materials Science
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research)
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in Microgravity Conditions. Materials Under Extreme Conditions,
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the Materials Rocket Maser. In 15th International Symposium on

Space Technology and Science, Tokyo, Japan, May 19-23, 1987, pp.
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(8) Zaar, J., Bj6rn, L., and J6nsson, R.: Preliminary MASER 1

Results and the Evolution of the MASER Programme. In Proceedings

of the 8th ESA Symposium on European Rocket and Balloon

Programmes and Related Research, Sunne, Sweden, May 17-23, 1987,

ESA SP-270, pp. 359-361. (post-flight; very short description)

(9) Grunditz, H.: Flight Results of the ESA Experiment Modules in

MASER i. In Proceedings of the 8th ESA Symposium on European

Rocket and Balloon Programmes and Related Research, Sunne, Sweden

May 17-23, 1987, ESA SP-270, pp. 363-367. (post-flight)

f

(I0) Grunditz, H.: Experiment Equipment for Metallurgy and Fluid

Science Studies Under Microgravity. 37th Congress of the Inter-

national Astronautical Federation, Innsbruck, Austria, October 4-

ii, 1986. (post-flight)
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(Ii) Meniscus Stability in Immiscible Metals. In Summary Review

of Sounding Rocket Experiments in Fluid Science and Materials

Sciences, ESA SP-I132, February 1991, pp. 278-279. (post-flight)

Contact(s):

A. Passerone, or R. Sangiorgi

Consiglio Nazionale delle Ricerche (CNR)

Ist. di Chimica Fisica Applicata dei Materiali

Via de Marini, 6

1-16149, Genova

Italy

F. Rossitto

EAC

c/o DLR

D-51140 K61n

Germany
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Prlnoipal Investigator(s): Prinz, B. (I)

Co-Investlgatoz(s) z Ayhan, M. (2)

Affillatlon(s): (1) Metallgesellschaft AG, Frankfurt, Germany;

(2) During TEXUS 15: Metallgesellschaft AG, Frankfurt, Federal

Republic of Germany, Currently: Huettenwerke Kayser AG, Luenen,

Germany

Experiment Origin: Federal Republic of Germany
Misslonz TEXUS 15

Launch Date/Expt. Date: May 1987

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Prooesslng Facility: TEXUS Experiment Module TEM 01-1

Builder of Processing Facility: MBB/ERNO, Bremen, Germany

Experiment:

Separation of Monotectic Ternary Alloys

On Earth, alloys which have a monotectic minority phase embedded

in a multiphase matrix are often difficult to produce. During

processing of such systems, rapid sedimentation of the droplets

of the denser minority phase results in the coagulation of the

dense phase at the bottom of the sample.

This TEXUS 15 experiment was the first in a series of investiga-

tions designed by Prinz et al. to study the separation of

monotectic ternary alloys.

Before the rocket flight, three 9.8 mm diameter, 6.7 mm long

samples of the AI-Si-Bi monotectic ternary alloy were placed in

boron-nitride crucibles and sealed in a Ni-cartridge. Ther-

mocouples were located at the outer surface of the cartridge.

Just prior to launch, the cartridge was heated to 470 °C.

Reportedly, shortly after the successful launch of the TEXUS 15

rocket, data and television transmitters experienced a partial

failure. It was discovered that a lateral burn-through of the

second stage of the rocket had occurred and the stage, in turn,

had collided with the prematurely separated payload. The upper

part of the payload including the TEM 01-i module parachuted to

the Earth undamaged.

It appears (from Reference (2)) that during a low-gravity portion

of the flight, the sample cartridge temperature was first in-

creased above 950 °C and then lowered (cooled) by flushing helium
at the crucible bottom.

It had been expected (if the rocket failure had not occurred),

that the low parity condition during the experiments would have
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led to a spatially homogeneous distribution of dispersed Bi-phase

in the matrix of Al-primary crystals and Al-Si-eutectic.

Documentation detailing any analysis of the three samples does

not appear to be available.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Monotectic Compositions, Ternary Systems, Eutectics,

Minority Phase, Multiphase Media, Metallic Matrix, Phase Separa-

tion, Melt and Solidification, Sedimentation, Separation of Com-

ponents, Density Difference, Drops, Coagulation, Homogeneous Dis-

persion, Liquid/Liquid Dispersion, Liquid/Liquid Interface,

Solid/Liquid Interface, Rocket Motion, Acceleration Effects,

Payload Survivability, Rocket Failure

Number of Samples: three

Sample Materials: Monotectic ternary alloys: AlSi2.5Bi5,

AISi5Bi5, and AISi5Bi20 (in wt.%) <Note: Reference (2), which

was the only reference which listed the sample materials,

presented them in this confusing format.>

(AI*Si*Bi*)

Container Materials: The samples were contained in boron nitride

crucibles and sealed in a single Ni-cartridge.

(B'N*, Ni*)

Experiment/Material Applications:

"The Al-based monotectic alloys, where a monotectic minority

phase is embedded in a multiphase matrix, are expected to have

significantly improved bearing properties." (Reference (2))

References/Applicable Publications:

(i) Experimentelle Nutzlast und Experimente TEXUS 15.

BMFT/DFVLR TEXUS 13-16 Abschlussbericht, 1988, pp. 107-108.

German; post-flight)

In

(in

(2) Input received from A. Romero, August 1991 and August 1993.

Contact(s):

Dr. B. Prinz

Metallgesellschaft AG
Zentrallaboratorium

Reuterweg 14

60271 Frankfurt am Main

Germany
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Principal Investigator(s): Prinz, B. (i)

Co-Investlgator(s): Ayhan, M. (2)

Affiliation(s): (1) Metallgesellschaft AG, Frankfurt, Germany;

(2) During TEXUS 16: Metallgesellschaft AG, Frankfurt, Federal

Republic of Germany, Currently: Huettenwerke Kayser AG, Luenen,

Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 16

Launch Date/Expt. Date: November 1987

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-1

Builder of Processing Facility: MBB/ERNO, Bremen, Germany

Experiment:

Separation of Monotectic Ternary Alloys

This TEXUS 16 experiment was the second in a series of investiga-

tions designed by Prinz et al. to study the separation of

monotectic ternary alloys (see Prinz, TEXUS 15). The experimen-

tal setup and expected inflight procedure were similar to those

described under Prinz, TEXUS 15.

Reportedly, shortly after the successful launch of TEXUS 16, fuel

in the second stage of the rocket did not ignite as planned.

After the apogee was reached, and the rocket began to fall, the

yo-yo despin system was deployed as programmed. Due to the unex-

pected excess rocket mass, however, there was an incomplete

reduction of rocket spin. Subsequently, the payload separated

from the second stage, but the parachute was not released. An

unbraked impact of the payload resulted in the destruction of all

experiment modules including the TEM 01-i module.

No further discussion of this experiment could be located at this

time.

Key Words: Systems Exhibiting a Miscibility Gap, Immiscible Al-

loys, Metallic Matrix, Monotectic Compositions, Ternary Systems,

Eutectics, Minority Phase, Phase Separation, / Multiphase Media,

Melt and Solidification, Sedimentation, Separation of Components,

Density Difference, Drops, Coagulation, Dispersion, Homogeneous

Dispersion, Liquid/Liquid Dispersion, Liquid/Liquid Interface,

Solid/Liquid Interface, Rocket Motion, Acceleration Effects,

Payload Survivability, Rocket Failure
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Number of Samples: three

Sample Materials: Monotectic ternary alloys: AISi2.5Bi5,

AISi5Bi5, and AISi5Bi20. <Note: Reference (2), which was the

only reference which listed the sample materials, presented them

in this confusing format.>

(AI*Si*Bi*)

Container Materials: The samples were contained in boron nitride

crucibles and sealed in a single Ni-cartridge.

(Bi*N*, Ni*)

Experiment/Material Applications:

See Prinz, TEXUS 15.

References/1_pplicable Publications:

(i) Die Kampagne TEXUS 16. In BMFT/DFVLR TEXUS 13-16

Abschlussbericht, 1988, pp. 109-111. (in German; post-flight)

(2) Input received from A. Romero, August 1991 and August 1993.

Contact(s):

Dr. B. Prinz

Metallgesellschaft AG

Zentrallaboratorium

Reuterweg 14

60721

Frankfurt am Main

Germany
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Principal Investlgator(s): Harris, J. M. (i), Concus, P. (2)

Co-Investlgator(s): Unknown

Affillation(s): (I) Chemistry Department, University of Alabama,

Huntsville, Alabama; (2) Department of Math, University of

California, Berkeley, California

Experiment Origin: USA

Mission: Consort 1 (Starfire Rocket)

Launch Date/Expt. Date: March 1989

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: Twelve glass cuvettes (1.5-mi) filled with

immiscible fluids. Stirring bars mixed the fluids.

Builder of Processing Facility: Unknown

Experiment:

Demixinq of Immiscible Polymers

When appropriate amounts of polymers such as polyethylene glycol

(PEG) and dextran are mixed with water on Earth, demixing occurs

rapidly and a two-phase, liquid-liquid system results. In this

two-phase terrestrial system, most of the (lighter) PEG is lo-

cated in the top phase and most of the (heavier) dextran is lo-

cated in the bottom phase.

As detailed in the applications section below, such two-phase

demixing is important for several reasons including a biological

purification technique which relies on the selective partitioning

of the phases. If the two-phase systems will selectively parti-

tion in the low-gravity environment, benefits of such low-gravity

separation might be (i) reduced biological cell sedimentation and

(2) reduced rate of phase emulsion demixing.

A related investigation on the earlier STS 51-D which examined

the phase partitioning of two-phase polymer systems (see Brooks,

STS 51-D (Chapter i)) indicated that the systems did demix in the

low-gravity environment. Further, the demixing occurred at

slower rates and more uniformly than Earth-based separations.

This Consort 1 experiment was the third in a series of investiga-

tions designed by Harris and/or Brooks et al. to evaluate the

demixing of aqueous polymer two-phase systems (see Brooks, STS

51-D; Brooks, STS-26 (both in Chapter i)). The major objective

of the experiment was to "...determine if the mixing rate and

location of the aqueous polymer two-phase systems can be con-

trolled by changing the wall wetting.., with polymer coatings on

the container and by changing container shape." (2, p. 345)
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Prior to the rocket launch, 12 glass cuvettes (each 1.5 ml) were

filled with various immiscible liquids. <Note: The following

items were not detailed in applicable documents written after the

Consort 1 flight: (i) the employed immiscible liquids, (2) the

specific coatings applied to the cuvettes and (3) the shape of

each of the cuvettes.> The rocket was launched and 15 seconds

prior to the initiation of the low gravity phase, liquid pairs in

each of the cuvettes were mixed for 30 seconds by a motor-driven

stirring bar. The subsequent demixing was photographed every 15
seconds.

Post-flight analysis of the photographs revealed that (i) the

film was underexposed and (2) two of the stirring bars did not

operate as anticipated. Further, "...the phases which were mixed

did not demix to any significant degree during the 7-minute low g

period, even though these same systems were largely demixed

during the same time on... [the] recent STS-26 flight .... " (4, p.

29)

Speculations were presented as to why the demixing did not occur

as anticipated. On STS-26, mixing of the fluids was done by hand

(shaking of the fluid-filled container which held a mixing ball);

while on Consort i, a more efficient mixing method was used

(mechanical stirring bars). Thus, it was suggested that the more

efficient mixing on Consort 1 had produced significantly smaller

droplet sizes in the fluids systems. Secondly, the corresponding

STS-26 experiments were performed at a temperature of 28 °C,

while the Consort experiments were performed at a temperature of

19 °C. Earlier work had indicated that the demixing occurs more

rapidly at higher temperatures. <Note: Specific references to
this earlier work were not detailed.>

"The contents of the unstirred cuvettes separated very nicely

into two phases: one phase had moved to one side of the cuvette

and formed an irregular shape. The shape remained relatively un-

changed and motionless during the remainder of the photographs.

Densitometry analysis clearly showed the separation .... The

seeming lack of motion was an indication of a relatively good low

gravity environment on-board the rocket once the low gravity por-

tion of the flight was attained. Previous experiments on the

shuttle showed these shapes to be very sensitive to accelera-

tions." (i, p. 8)
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Key Words: Systems Exhibiting a Miscibility Gap, Immiscible

Fluids, Binary Systems, Polymers, Aqueous Solutions, Multiphase

Media, Transparent Liquids, Model Materials, Stirring of Com-

ponents, Liquid Mixing, Liquid Demixing, Separation of Com-

ponents, Phase Partitioning, Phase Separation, Liquid/Liquid In-

terface, Liquid/Liquid Dispersion, Emulsion, Interfacial Tension,

Drops, Droplet Size, Drop Migration, Segregation, Sedimentation,

Density Difference, Wetting, Wetting of Container, Container

Shape, Crucible Effects, Coated Surfaces, Contained Fluids,

Biotechnology, Photographic Difficulties, Hardware Malfunction,
Acceleration Effects

Number of Samples: twelve

Sample Materials: aqueous two-phase (immiscible) systems

Container Materials: Twelve 1.5 ml glass cuvettes. It appears

some (if not all) of the cuvettes may have (1) been coated with

Dextran coatings, and/or (2) been of various shapes.

Experiment/Material Applications:

"The interfacial tension in these two-phase [immiscible] systems

is very low (approximately a thousand times less than that for a

typical organic-water two-phase system) and they can be buffered

with various salts. As a consequence, biological materials such

as proteins and cells are quite stable in these systems. An im-

portant biological purification technique is based on this par-
titioning of materials between the two phases and the inter-

face .... The systems also serve as transparent fluid models with

which to study the fluid physics of demixing processes in polymer

blends, polymer-gas foams, and metals. This knowledge is ap-

plicable to (1) providing a better understanding of the role of

phase segregation and domain size and uniformity in determining

the properties of polymer blends and polymer foams... (2) model-

ing of demixing of immiscible metals.., and (3) purification of

biological materials by partitioning between the two liquid

phases formed in the aqueous polymer two-phase systems." (2, p.
345)

References/Applicable Publications:

(I) Wessling, F. C., Lundquist, C. A., and May_ee, G. W.: Consort

1 Flight Results - A Synopsis. 40th Congress of the Interna-

tional Astronautical Federation, October 7-12, 1989, Malaga,
Spain, IAF-89-439, 11 pp. (post-flight)

17-228



(2) Wessling, F. C. and Maybee, G. W.: Consort 1 Sounding Rocket

Flight. Journal of Spacecraft and Rockets, Vol. 26, No. 5,

September-October 1989, pp. 343-351. (post-flight)

(3) Harris, J. M.: Physical Properties of Immiscible Polymers. In

Consortium for Materials Development in Space, Technical Section,

pp. 72-77, University of Alabama, Huntsville, Alabama, (1986-

1987). (preflight)

(4) Harris, J. M.: Physical Properties of Immiscible Polymers. In

1989 Annual Report of the Consortium for Materials Development in

Space, University of Alabama, Huntsville, Alabama, pp. 28-31.

(5) Bamberger, S., Van Alstine, J. M., Harris, J. M., Baird,

J. K., Snyder, R. S., Boyce, J., and Brooks, D. E.: Demixing of

Aqueous Polymer Two-Phase Systems in Low Gravity. Separation

Science and Technology, 23(1-3), pp. 17-34. (preflight; KC-135

results)

(6) Concus, P.: Equilibrium Fluid Interfaces in the Absence of

Gravity. Lawrence Berkeley Laboratory, University of California

Physics Division, presented at the American Society of Mechanical

Engineers, Winter Meeting, Anaheim, California, December i,

1986. (related research)

Contact(s):
Dr. J. Milton Harris

Chemistry Department, SB 346

University of Alabama

Huntsville, AL 35899
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Principal Investigator(s): Harris, J. M. (i), Wessling, F. C.

(2), Giebel, J. (3)

Co-Investlgator(s): Unknown

Affiliation(s): (1) Chemistry Department, University of Alabama,

Huntsville Alabama; (2) Department of Mechanical Engineering,

University of Alabama, Huntsville, Alabama; (3) Phillips

Petroleum Company, Bartlesville, Oklahoma

Experiment Origin: USA

Mission: Consort 1 (Starfire Rocket)

Launch Date/Expt. Date: March 1989

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facillty: A series of rectangular cavities containing
the sample resins; two silicone rubber heaters.

Builder of Processing Facility: Dr. F. C. Wessling, Consortium

for Materials Development in Space at the University of Alabama
in Huntsville

Experiment:

Elastomer-Modified Epoxy Resins Heater

Pre-Consort experiments (not specifically identified in Reference

(2)), which examined the demixing of immiscible liquids in a

reduced gravity environment, illustrated that "...the demixing

process proceeds unusually slowly to give spherical [droplet]

domains undistorted by sedimentation." (2, p. 31) Thus, because

it was expected that the "...domain size and morphology will af-

fect the mechanical properties of... [immiscible polymer]

blends..." (2, p. 31), experiments were performed on Consort 1 to

examine the droplet morphologies and distributions of elastomer

modified epoxy resins.

Such resins exist as a single phase until they are heated. When

"...heat is applied.., catalytic cross-linking begins. As cross-

linking proceeds, the elastomer phase separates from the epoxy

phase and shortly thereafter the morphology is frozen by
solidification." (2, p. 31)

The specific objective of this Consort experiment was "...to ex-

amine several of the epoxies with different compositions giving

different phase separation points." (2, p. 31) Reportedly, the

experimental package consisted of "...a thin mold of aluminum

with a series of rectangular cavities containing the resin. This

mold... [was] sandwiched by thin aluminum plates which... [were]

in turn, sandwiched by two silicone-rubber heaters." (2, p. 31)
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During the low-gravity phase of the mission, the package was

rapidly heated (within 200 seconds) to 200 °C. During the next 4

minutes, the 200 °C temperature was maintained and all 12 resin

samples were cured. The temperature was maintained at 200 °C for

1 minute longer, then the heating was terminated as the rocket

exited the low-gravity phase.

Post-flight analysis of the samples was still in progress at the

time References (i) and (2) were written. However, it was

reported that unexpectedly, all 12 low-gravity samples appeared

translucent. (Similarly processed ground-based samples were

opaque.) Further, "Preliminary examination indicates that little

phase separation occurred during the flight. If phase demixing

indeed proceeds more slowly in low-g (as indicated by our other

work with immiscible liquids) this would be expected." (2, p. 32)

It appears that the resultant deposition of rubber in epoxy was

still to be determined by electron microscopy at the time these
references were written.

<Note: Previous pre-Consort experiments discussed in the first

paragraph of this experiment summary most likely refer to two

shuttle experiments performed by Brooks et al. and/or to KC-135

experiments which were related to the Brooks shuttle experiments

(see Brooks, STS 51-D, STS-26 (Chapter I)). The experiment,

"Demixing of Immiscible Polymers," is also applicable to this ex-

periment (see Harris, Consort 1 (this chapter).>

<Note: Chapter 5, "Composites With Solid Particles," contains

another experiment involving the curing of epoxy resins (see Dal-

ley, STS-004, "Composite Curing").>

Key Words: Systems Exhibiting a Miscibility Gap, Epoxy Resins,

Elastomer Modified Epoxy Resins, Two-Phase System, Polymers, Melt

and Solidification, Phase Separation, Separation of Components,

Liquid Demixing, Sedimentation, Drops, Droplet Dispersion, Par-

ticle Distribution, Particle Size Distribution, Curing,

Catalysts, Solid/Liquid Interface, Liquid/Liquid Interface

N_m_ber o£ Samples: twelve (four each of three different polymers)

Sample Materials: "The system selected for this experiment con-

sists of three elastomer-modified epoxy resins. The elastomers

are commercial products and are of the general class of materials

called carboxy-terminated copolymers of butadiene and

acrylonitrile (C elastomers). These elastomers can be reacted
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with epoxy resins (typically a low molecular weight epoxy resin)

to yield an epoxy-capped elastomer."(3, p. 345) "...i

methylimidazole is an effective catalyst for the crosslinking

process .... " (2, p. 31)
Container Materials: aluminum

(AI*)

Experiment/Material Applications:

It was expected that low-gravity processing would produce samples

with differing elastomer droplet morphologies and distributions.

If these expectations were realized, an improvement in sample

mechanical properties might have resulted. "The addition of rub-

ber [an elastomer] to epoxy lowers the tensile strength and

modulus of elasticity...but increases the fracture energy by a

factor of 20." (3, p. 345)

References/Appllcable Publications:

(i) Wessling, F. C., Lundquist, C. A., and Maybee, G. W.: Consort

1 Flight Results - A Synopsis. 40th Congress of the Interna-

tional Astronautical Federation, October 7-12, 1989, Malaga,

Spain, IAF-89-439, 11 pp. (post-flight)

(2) Elastomer Modified Epoxy Resins. In Consortium for Materials

Development in Space, The University of Alabama in Huntsville,

Annual Report, Technical Section, October i, 1988-September 30,

1989, pp. 31-32. (post-flight)

(3) Wessling, F. C. and Maybee, G. W.: Consort 1 Sounding Rocket

Flight. Journal of Spacecraft and Rockets, Vol. 26, No. 5,

September-October 1989, pp. 343-351. (preflight)

Contact(s):

Dr. J. Milton Harris

Chemistry Department, SB 346

University of Alabama

Huntsville, AL 35899

Dr. Francis Wessling

University of Alabama in Huntsville

Research Institute Bldg.

Room M65

Huntsville, AL 35899
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CHAPTER 18

TECHNOLOGICAL EXPERIMENTS
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Principal Investigator(s): Williams, J. R. (i)

Co-Investigator(s): Unknown

Affiliation(s): (i) National Aeronautics and Space Administration

(NASA), Marshall Space Flight Center (MSFC), Huntsville, Alabama

Experiment Origin: USA

Mission: Skylab, SL-2, First Skylab Manned Mission

Launch Date/Expt Date: June 1973 (month experiments were

performed)

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Materials Processing Facility (MPF) panels located

forward from the Multiple Docking Apparatus (MDA) area, Skylab
Manned Environment

Processing Facility: Exothermic Brazing Package: chamber provid-

ing the vacuum of space (part of the Skylab Sphere Forming Ex-

periment, M553)

Builder of Processing Facility: Unknown

Experiment:

Exothermic Brazinq (M552)

Brazing is a metal joining procedure in which a braze alloy flows

between the surfaces of two metals and solidifies, acting as a

cement. The process differs from welding because the base metals

(metals to be joined) are not melted. The bond between the base

metal and braze alloy is formed by surface alloying: diffusion

of the materials across the base-metal/braze-alloy interface

forms intermetallic compounds.

The gap between the base metals is filled via capillary action of

the braze alloy. The capillary flow of the alloy is affected by

(i) the surface tension of the alloy, (2) the width and unifor-

mity of the gap between the base metals, (3) the wetting charac-

teristics of the alloy, and (4) the gravitational forces which

may oppose capillary flow.

This Skylab SL-2 experiment was designed to investigate brazing

operations under low-gravity conditions. The specific objectives

of the study were to (I) simulate the joining of two tubes (via

brazing) in space and (2) investigate the low-gravity behavior

(mobility, mixing, and capillarity) of a braze alloy.

During the SL-2 mission, the M552 Exothermic Brazing Package was

used to conduct the experiment. The experimental hardware was

connected to the M512 Materials Processing Facility and used the

M512 battery for power. The M552 package contained two nickel

and two stainless steel tubes. Each of the four tubes had a 1.9

cm diameter and a 0.12 cm wall thickness. A slit was cut around

the perimeter of each of the tubes to simulate two separate tubes
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butted against each other. A portion of the perimeter was left
uncut to provide support. Surrounding the simulated joint was a
sleeve, either nickel or stainless steel, which was brazed to the
tube. Between the sleeve and tube were (I) tapered spacer in-
serts (to provide a specific clearance) and (2) braze alloy
rings (71.8 wt.% Ag - 28.0 wt.% Cu - 0.2-0.4 wt.% Li) snapped

into grooves near each end of the sleeve. Reportedly, a small

portion of the braze rings in the Ni tubes had been irradiated

with Ag-ll0 isotope to allow post-flight mapping of the metal

flow patterns.

Each of the four samples was held in its own cylinder which con-

tained (i) fibrous aluminum oxide insulation, (2) an exothermic

material (composed of aluminum, boron, titanium dioxide, and

vanadium pentoxide), and (3) an ignitor. The entire assembly was

held in a chamber that could be evacuated to space.

During the mission, each sample was processed separately over a

2-day period. At the start of an experiment, the chamber was

evacuated for 2 hours. Ignition was initiated, resulting in a

heating of the exothermic material and melting of the braze al-

loy. Approximately 90 minutes was required for the complete

reaction to occur. The reaction was followed by a 2.75 hour

cool-down period. Extensive ground-based experimentation was

also performed for comparison. Reportedly, the hardware per-

formed satisfactorily during the mission.

Post-flight examination of the samples included X-ray,

autoradiographic, and metallographic techniques (see Reference

(i) for details). Results from these investigations led to the

following conclusions:

(I) The M552 experiment demonstrated that brazing operations are

feasible under low-gravity conditions. The surface tension

forces driving capillary flows were dominant during the brazing

operation. Examination of the braze alloy distribution

demonstrated that dimensional tolerances, particularly gap sizes,

were less critical than on Earth. Therefore, "In space fabrica-

tion, many joints, which on earth would be produced by welding,

should probably be brazed to allow wider fit up tolerances." (i,

p. 56)

(2) "The absence of gravity definitely and surprisingly changes

the ways in which liquid and solid metals interact. For example,

for the same time and temperature conditions of exposure (a) liq-

uid silver-copper alloy dissolves nickel more rapidly in space

than on Earth, and (b) solid stainless steel dissolves copper

from liquid silver-copper alloy more rapidly in space than on

Earth. The detailed mechanisms by which these reactions are has-

tened have not been positively identified, and this effect of
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space environment had not been predicted." (i, p. 56) After
preliminary analysis of these results, it was thought that in
space, Ni has a higher solubility in a liquid silver-copper alloy
than on Earth. However, this higher solubility was later at-
tributed to the more rapid dissolution of Ni under low-gravity
conditions. This suggested that (i) saturated liquid metal solu-
tions may be more easily produced and (2) determination of true
solubilities would be easier in space.

(3) The low-gravity behavior of (a) the liquid-vapor boundary and
(b) the surface tension driven flow of liquid metal is in good
agreement with the theoretical predictions.

(4) The addition of the radioisotope tracer to the two Ni samples
provided a unique picture of (a) the thermal history of the braze
melting and (b) the braze alloy flow pattern. These results in-
dicated an unexpected, complete circumferential mixing of the
isotope that was attributed to (a) liquid-state diffusion and/or
(b) turbulence in the capillary flow. On Earth, the isotope
tended to settle due to gravity-induced sedimentation.

(5) It appeared that gravity, or the lack of gravity, had no ef-
fect on the mechanism of alloy solidification. Microstructural
details (e.g., dendritic structure, eutectic structure) were the
same in the space and Earth samples.

(6) The low-gravity samples contained fewer and smaller shrinkage
defects than ground-based samples. This result indicated that
gravity-induced forces significantly affect capillary flow on the
braze alloy.

(7) The Skylab samples contained less oxide buildup than the
Earth-processed materials indicating the adequacy of the space
vacuum for brazing operations.

Additional details of the experimental results can be located in
Reference (i).

Key Words: Technological Experiments, Brazing, Gap Filling, Melt
and Solidification, Metals, Intermetal_ics, Diffusion,
Solubility, Saturated Solution, Radioactive Tracer Diffusion,
Isotopes, Binary Systems, Ternary Systems, Alloys, Space Vacuum,
Thermocapillary Flow, Capillary Flow, Turbulent Flow, Liquid

Mixing, Meniscus Shape, Surface Energy, Surface Tension, Wetting,

Solid/Liquid Interface, Liquid/Vapor Interface, Dendritic Struc-

ture, Sample Microstructure, Defects, Tracer Material
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Number of Samples: four

Sample Materials: Samples 1 and 2 (joint material): pure nickel;

samples 2 and 3 (joint material): stainless steel. Samples 1 and

2 (braze alloy): 72 wt.% Ag-28 wt.% Cu-0.2wt.% Li with ll0-Ag

radioactive tracer isotope; samples 3 and 4 (braze alloy) : 72

wt.% Ag-28 wt.% Cu-0.2wt.% Li

(Ni*Ag*, Ag*Cu*Li*)

Container Materials: not applicable

Experiment/Material Applications:

Brazing is a process which may be used for repairing or building

large structures in space.

The specific reasons why Ni and stainless steel tubes were chosen

for this brazing experiment were not presented in available
literature.

References/Applicable Publications:

(i) Williams, J. R.: Skylab Experiment M552 Exothermic Brazing.

In Proceedings of the Third Space Processing Symposium on Skylab

Results, April 30-May i, 1974, Marshall Space Flight Center,

Huntsville, Alabama, Vol. I, June 1974, pp. 33-84. (post-flight)

(2) Tobin, M. and Kossowsky, R.: Research Study on Materials

Processing in Space Expt. M512, Final Report on M551, M552 and

M553. NASA CR-120479, 1973. (post-flight)

(3) Bourgeois, S. : Convection Effects on Skylab Experiments

M551, M552, and M553. Phase C Report, NASA CR-120482, 1973.

(preflight)

(4) Pattee, H. E. and Monroe, R. W.: Characterization of Ex-

othermic Brazing Components, Skylab Experiment M552. NASA CR-

12518, 1973. (post-flight)

(5) Heine, R. W., Adams, C. M., and Siewert, T. A. :

Flight/Ground Sample Comparison Relating to Flight Experiment

M552, Exothermic Brazing. NASA CR-12059, 1973. (post-flight)

(6) Braski, D. N., Adair, H. L., and Kobisk, E. H.: Radioactive

Tracer Studies in the NASA Skylab Exothermic Brazing Experiment

M552. NASA CR-129035, 1974. (post-flight)

(7) Muraki, R. and Masubichi, K.: Discipline Report on Thermal

Analysis of M551, M552 and M553 Experiments. NASA CR-120513,

1974. (post-flight)
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(8) Larson, D. J., Jr.: Metallurgical Analysis of Skylab M552 and
558 Samples, Final Report. Grumman Research Dept., Report RE-
565, 1978. (post-flight)

(9) Bourgeois, S. V.: Convection Effects on Skylab Experiments
M551, M552, and M553-Phase C Report. LMSC-HREC TR D 306955,
Lockheed Missiles and Space Company, Huntsville, Alabama, Decem-

ber i, 1973. (post-flight)

(i0) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by

NASA. In Workshop Proceedings of the Measurement and Charac-

terization of the Acceleration Environment on Board the Space

Station, August 11-14, 1986, Guntersville, Alabama, p. 9-1.

(acceleration measurements during Skylab)

(ii) "Experiment M552-Exothermic Brazing," In MSFC Corollary Ex-

periment Systems Mission Evaluation, NASA TM X-64820, September

1984, pp. 5-31 - 5-34. (post-flight)

(12) "M512 Materials Processing Facility," In MSFC Skylab Corol-

lary Experiment Systems Mission Evaluation, NASA TM X-64820, Sep-

tember 1974, pp. 5-1 - 5-18. (processing facility)

Contact(s):

James Williams

ET31

NASA Marshall Space Flight Center, AL 35812

18-7



Principal Investigator(s): Bathke, W. (i), Schlecker, H. (2)

Co-Investigator(s): Philippovich, N. (3), Stickler, R. (4),

Frieler, K. (5)

Affiliation(s) : (1,2) Bundesanstalt fur Materialprdfung, BAM,

Berlin, Germany; (3,4,5) Institut fur Physikalische Chemie,

University of Vienna, Austria

Experiment Origin: Federal Republic of Germany/Austria
Mission: TEXUS 2

Launch Date/Expt. Date: November 1978

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-i: Metallur-

gical Isothermal Heating Facility (IHF) Furnace

Builder of Processing Facility: Unknown, probably Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Capillary Brazing

This TEXUS 2 experiment was the first in a series of investiga-

tions designed by Bathke and/or Frieler et al. to evaluate the

effects of low-gravity on the vacuum brazing cycle. Of par-

ticular interest was the resultant reduced-gravity capillary-

driven flow of the braze alloy into gaps between the base

material. It was expected that this flow would not be influenced

by the weight of the melts.

The TEXUS specimen consisted of an assembly of four nickel

cylinders nestled one inside the other. The outer cylinders

formed a 200 _m concentric cylindrical gap, while the inner

cylinders formed a 0-2000 _m variable clearance sickle-shaped

gap. Prior to the flight, the whole assembly was housed in a

stainless steel cartridge and s_aled after evacuation to an in-
ternal pressure of less than i0 -_ Pa.

During the mission, the assembly was brazed in a resistance

heated furnace with a near-eutectic Ag-Cu alloy. The alloy con-

tained trace amounts of Li (which promoted spreading) and

radioactive Ag (which acted as a tracer). As indicated by system

thermocouples, both Earth and low-gravity processed specimens did

not reach the desired peak temperature in all locations.

"Therefore, the 200 _m gaps of both specimen[sic] were filled

only partially in the shorter portion, the bulk of the braze

remaining in the depot region." (i, p. 120)

Post-flight, specimens were evaluated by X-ray radiography,

autoradiography, photography and metallography techniques.

Reportedly, "In principle the same type of microstructure [of the
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Ni/AgCu system] could be observed in both l-g and low-gravity
specimens .... However, the distribution of various phases showed
marked differences between these two specimens." (i, p. 118) (The
TEXUS sample exhibited an increased precipitation of the primary
phase which was attributed to the low-gravity reduced mass
transport.)

It was noted that under low-gravity conditions, "...gaps with a
width of up to 2000 _m can be filled due to the action of capil-
lary forces." (i, p. 120) "However, the shrinkage porosity in-
creased in the largest area of the brazing seam." (7, pp. 352)
Because both l-g and low-gravity samples illustrated that
"...circumferential flow of the braze did occur inside the depot
prior to gap filling... [and] radiation could be detected in
every part of the filled gap..." (i, p. 120), it was concluded
that "...transport mechanisms responsible for the mixing are in-
dependent of gravity." (i, p. 120)

Key Words: Technological Experiments, Brazing, Gap Filling, Dif-
fusion, Radioactive Tracer Diffusion, Melt and Solidification,
Mass Transfer, Metals, Eutectics, Alloys, Ternary Systems, Ther-
mocapillary Flow, Capillary Forces, Capillary Flow, Surface Ten-
sion, Free Surface, Liquid Spreading, Wetting, Liquid Mixing,
Hydrostatic Pressure, Tracer Material, Precipitation, Porosity,
Vacuum, Processing Difficulties

Number of Samples: one

Sample Materials: An assembly of thin-walled pure nickel tubing

forming annular gaps (nickel purity 99.6 wt.%). Filler material:

near-eutectic alloy of 71.7 wt.% Ag, 28 wt.% Cu, and 0.3 wt.% Li.

(The filler alloy contained radioactive Ag to act as a tracer.)

(Ni*), (Ag*Cu*Li*), (Ag*)

Container Materials: The whole assembly was housed in a stain-

less steel cartridge.

Experiment/Materlal Applications:

Vacuum brazing is frequently employed to join metals. "However,

investigations of brazing reactions and mechanisms remain largely

empirical because of the multitude of base metal/filler metal

multicomponent systems and the multiplicity of the interactions

of numerous essential parameters." (1, p. 117) Details of the

brazing process and the effects of gravity on gap filling were

investigated here.
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References/Applicable Publications:

(i) Freiler, K., Philippovich, N., Stickler, R., and Bathke, W.:

Capillary Brazing Under Microgravity (Texus-II) and IG Condi-

tions. Advances in Space Research, Vol. i, No. 5, 1981, pp. 117-

120. (post-flight)

(2) Schlecker, H. and Szimkowiak, P.: Preparation, Implementa-

tion and Evaluation of Material Science Experiments Under the SLN

Program TEXUS 2. In TSLP Final Report January 1980, RPT# BMFT-

FB-W-81-033. (in German)

(3) Bathke, W., Philippovich, N., Stickler, R., and Frieler, K.:

Brazing of Capillary Gaps. In Shuttle/Spacelab Utilization Final

Report Project TEXUS II, DFVLR, Koln, 1978, pp. 62-90. (post-

flight)

(4) Philippovich, N., Frieler, K., Stickler, R., and Bathke, W. :

Brazing Under Microgravity- TEXUS II Experiment. In ESA 3rd

European Symposium on Materials Sciences in Space, Grenoble,

April 24-27, 1979, ESA SP-142, pp. 95-100.

(5) Frieler, K., Stickler, R., and Siegfried, E.: Brazing Under

Microgravity in a Resistance Heated Furnace. Materials Processing

in the Reduced Gravity Environment of Space, Materials Research

Society Symposia Proceedings, Vol. 9, pp. 639-649.

(6) Siegfried, E., and Frieler, K.: Vakuuml6ten unter Mikro-

gravitation. In Status Seminar 1981 des Bundesministerium fur

Forschung und Technologie, Spacelab-Nutzung, Werkstofforschung

und Verfahrenstechnik im Weltraum, 1981, DGLR-Bericht 81-01, pp.
213-220.

(7) Brazing of Capillary Gaps. In Summary Review of Sounding

Rocket Experiments in Fluid Science and Materials Sciences, ESA

SP-I132, February 1991, pp. 352-353. (post-flight)

Contact(s):

W. Bathke or H. Schlecker

Bundesanstalt fur Materialprufung
Unter den Eichen 87

D-1000 Berlin 45

Germany
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K. Frieler

Institut f_r Physikalische Chemie

Universit_t Wein

Wahringerstr. 42

A-1090 Wein

Austria
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Principal Investlgator(s): Frieler, K. (i), Stickler, R. (2)

Co-Investlgator(s): Siegfried, E. (3)

Affiliation(s): (1,2) Institut f_r Physikalische Chemie, Univer-

sity of Vienna, Austria; (3) During Spacelab 1: Fachgruppe

Fugetechnik der Bundesanstalt f_r Materialpr_fung, Berlin,

Federal Republic of Germany, Currently: Unknown

Experiment Origin: Austria

Mission: STS Launch #9, STS-O09 (STS 41-A, Spacelab i: Columbia)

Launch Date/Expt. Date: November 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility, Material Science Double Rack

(MSDR)

Processing Facillty: Isothermal Heating Facility (IHF) Furnace

Builder of Processing Facility: Entwicklingsring Nord (ERNO),

Bremen, Germany

Experiment:

Vacuum Brazinq IES305/IES304

This Spacelab 1 experiment was the second in a series of inves-

tigations designed by Frieler and/or Bathke et al. to evaluate

the effects of low-gravity on the vacuum brazing cycle (see

Bathke, TEXUS 2 (this chapter)). The specific objectives of the

experiment were to evaluate (i) gap filling mechanisms, (2) move-

ment of a filler metal within a braze depot by means of a tracer

metal, and (3) evolution of the microstructure of brazed gaps.

The flight specimen consisted of an assembly of concentrically

arranged (hollow) nickel cylinders. The assembly formed a

variety of gap geometries and were referenced as (i) the multi-

gap sample (MSP), (2) the annular gap sample (RSP), and (3) the

sickle-shaped sample (SSP).

During the mission, the assembly was brazed in the Spacelab

Isothermal Heating Facility (IHF) with a near-eutectic AgCu al-

loy. The alloy contained (i) a small quantity of Li (to promote

spreading of the filler material) and (2) 60 wt.% Au, 20 wt.% Ag

and 20 wt.% Cu (to act as a tracer material). First the as-

sembly was heated to a temperature slightly less than the melting

point of the filler material. After a thermal equilibrium was

established in the sample, the assembly was heated past the fill

material melting temperature and then cooled.

Reference samples (identically processed on the ground) were com-

pared to the flight sample. More vivid mixing was seen in the

flight sample, and it was thought that surface tension gradients

were responsible for the enhanced mixing. "As observed already in

the earlier TEXUS II experiment.., considerable mixing of the
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molten braze occurs along the specimen's circumference." (I, p.

96) While all gaps in the l-g sample were filled, only the outer

200 #m gap of the low-g sample was filled completely. "This unex-

pected result is attributed to a difference in heat flow between

the l-g and low-gravity specimen. In the l-g case the hydro-

static pressure provides a constant contact of the molten braze

with the inner cylinders of the MSP and thus a means of heat

transport through the liquid. In the low-gravity case an...

[annular] void was formed within the molten braze. This

prevented a contact of the front ends of the gaps with the liquid

and so impeded the heat transport by means other than radiation."

(i, p. 96)

An evaluation of the microstructure indicated that increased

porosity was observed in the 10w-gravity samples. This porosity

was due "...to the fact that bubbles created by instabilities or

outgassing processes are not removed by buoyancy forces." (i, p.

98) Sample evaluation also indicated that appreciable segrega-

tion of the melt and CuNi dendrites took place in the l-g sample,

while no such segregation was seen in the low-gravity sample.

In summary, results were: (i) that the microstructure is indepen-

dent of the gravitational level (as opposed to the findings of

other investigators), (2) that certain gap geometries will neces-

sarily lead to filling defects under low-gravity conditions, and

(3) that there is convection occurring within the braze depot

during filling.

Key Words: Technological Experiments, Brazing, Gap Filling, Dif-

fusion, Melt and Solidification, Heat and Mass Transfer, Alloys,

Metals, Ternary Systems, Thermocapillary Flow, Thermocapillary

Convection, Absence of Buoyancy Forces (Detrimental), Liquid

Mixing, Capillary Forces, Capillary Flow, Contact Angle,

Hydrostatic Pressure, Surface Tension, Free Surface, Liquid

Spreading, Wetting, Segregation, Porosity, Sample Microstructure,

Dendrites, Bubbles, Outgassing, Tracer Material, Vacuum, Thermal

Equilibrium

Number of Samples: one flight specimen with a variety of gap

geometries /

Sample Materials: An assembly of nickel tubing was used to create

the gaps (base metal 99. 6 wt. % Ni with traces of

C,Cu,Fe,Mn,S,Si,Cr,Ti,Co). Filler Metal: Near Eutectic AgCu with

traces of Li. (71.81 Ag, 28.02 Cu, 0.148 Li). Tracer metal: 60

wt.% Au, 20 wt.% Ag, 20 wt.% Cu.

(Ni*C*Cu*Fe*Mn*S*Si*Cr*Ti*Co*) , (Ag*Cu*Li*) , (Au*Ag*Cu*)
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Container Materials: Standard IHF cartridge.
cartridge material was not indicated.)

(The specific

Experiment/Material Applications:
Reportedly, the chosen materials are by themselves, of no sig-
nificance. The aim of the experiment was to investigate the
process of brazing per se. Space processing was desirable in or-
der to suppress the effects of hydrostatic pressure and thermal
convection.

References/Applicable Publications:
(I) Frieler, K., Stickler, R., and Siegfried, E.: Vacuum Brazing
Under Microgravity. In ESA 5th European Symposium on Material
Sciences Under Microgravity, Results of Spacelab i, Schloss E1-
mau, November 5-7, 1984, ESA SP-222, pp. 95-99. (post-flight)

(2) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by
NASA. In Workshop Proceedings of Measurement and Characteriza-

tion of the Acceleration Environment On Board the Space Station,

August 11-14, 1986, Guntersville, Alabama, pp. 9-1 - 9-48.

Teledyne Brown Engineering publication (acceleration measure-

ments on Spacelab i)

(3) Whittmann, K: The Isothermal Heating Facility. In 5th

European Symposium on Material Sciences Under Microgravity,

Results of Spacelab i, Schloss Elmau, November 5-7, 1984, ESA SP-

222, pp. 49-54. (IHF processing facility information)

(4) Frieler, K. and Stickler, R.: Hartloten unter Weltraumbedin-

gungen, Endbericht uber Experiment SL-305 im Rahmen yon SL-I.

87-IB-SL-BI, Institut fur Physikalische Chemie der Universitat

Wien, Wien, 1987. (final report on ES305)

(5) Input received from Principal Investigator K. Frieler, July

1988.

Contact(s):

K. Frieler

Institut fur Physikalische Chemie, Universitat Wien

Wahringerstr. 42

A-1090 Wien

Austria
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Principal Investigator(s): Kozma, L. (i), Warren, R. (2)

Co-Investigator(s): Unknown

Affiliatlon(s): (1,2) Chalmers University of Technology (CUT),

Goteborg, Sweden

Experiment Origin: Sweden
Mission: MASER 2

Launch Date/Expt. Date: February 1988

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Multi-Mission Mirror Furnace Module (M4).

(One of two available isothermal mirror furnaces in the M4 was

used for this experiment. The furnace employed three linear-

elliptical mirror arrays.)

Builder of Processing Facility: Saab Space, Link6ping, Sweden,

and The Swedish Space Corporation, Solna, Sweden

Experiment:

Adhesion of Metals on Ceramic Substrates (Direct Determination of

Wettinq by Molten Metals)

The efficiency of the brazing of ceramic materials with metals

depends greatly on the wetting capability of the materials. The

adhesion characteristics of the braze can often be improved by

adding chemically active metals to the braze.

This MASER 2 experiment was designed to investigate the wetting

of the brazing alloy CuAgTi on alumina, zirconia, titanium

nitride, and Incoloy (a Ni alloy). The specific objectives were

to (I) "...investigate the component distribution in the braze,

[(2)] ...determine the attractive forces between the braze and

the substrate and [(3)]... assess the influence of the surface

roughness on the wetting behaviour of the braze." (5, p. 356)

The experiment was one of two investigations performed within the

MASER Multi-Mission Mirror Furnace Module (M4) during the mission

(see also Fredriksson, MASER 2, "A Study of the Coalescence

process of Immiscible Alloys in Large Samples" (Chapter 17)).

The M4 contained two identical isothermal mirror furnaces, one of

which was used for this investigation. The furnace was

"...equipped with three linear-elliptical mirror arrays and each

array...[was] furnished with a set of ten halogen lamps. These

lamps...[were] individually controlled by a microcomputer to give

the correct temperature profile on the sample..." (2, p. 13)

<Note: It is unclear (i) how many samples were employed during

the investigation and (2) how these samples were individually

configured within the single isothermal furnace.>
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It was reported (Reference (5)) that "Drops of Cu-Ag alloys of

both hypo- and hypereutectic compositions (65 to 85 wt% Ag) and

with addition of 2 wt% of Ti were processed in titanium nitride,

alumina, zirconia and incoloy cells (6 mm diameter, 7 mm high),

whose walls presented different surface roughness. All cells

were stacked up in a single cartridge which was processed in an

isothermal furnace at 900 °C for 300 s under microgravity condi-

tions." (5, p. 356)

<Note: In contrast to Reference (5), Reference (4) reported that

two different concentrations of Ti in the CuAgTi brazing alloy

were examined (2 and 5 wt%).>

It was reported that (i) the M4 operated essentially as expected,

(2) controlled heating and cooling of the samples were achieved,

and (3) all samples were processed as planned.

<Note: The few results that were presented were somewhat dif-

ficult to understand without further details of the experiment

setup and inflight melting and solidification procedure. The

results are presented below as they appeared in References (4)

and (5).>

"Due to the spinning of the rocket during the launch, the drops

were located in the corners of the cells. Once melted they were

submitted to a dominating capillary force." (5, p. 356) "We

found that the molten metal drops were aligned in the same way in

all ceramic cells which shows that even the microgravity force is

sufficient enough to overcome surface attractive forces, at least

during the initiation of wetting. A very pronounced tendency of

capillary penetration could also be observed which suggests a

beneficial exploitation of this effect in engineering

designs .... " (4, Appendix 4, p. I) ("On earth, the alloys were

enriched in Cu opposite to gravity and consequently, presented an

asymmetrical Ti-build up at the metal/ceramic interface .... " (5,

p. 356) )

When discussing only the Ti 2 wt.% samples it was reported that

"The component distribution in the alloys processed in

microgravity was uniform.., independent of the asymmetry of the

substrate and of its roughness. The interfaces were uniformly

covered with Ti, thus yielding an even coupling. A better adhe-

sion on alumina was observed in microgravity .... The wetting

angle increased with the roughness.., and this effect was more

pronounced when the adhesion was weaker, as for instance with

alumina." (5, p. 356)

<Note: Reference (4) reported that "While with 5 wt% Ti all the

wetting experiments were successful, in some cases the 2 wt% con-

tent resulted in bad wetting. This appeared both on TiN and ZrO 2
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substrates." (4, Appendix I, p. i)>

"A significant conclusion can be drawn already at this stage of

evaluation with regard to the mechanism of wetting with active

braze. It is active only if it can react with the substrate

oxide or nitride forming an intermediate coupling layer. Being

deposited on metallic substrate (Incoloy) without chance to un-

dergo the above reactions it could not bring about wetting at

all. (4, Appendix 4, p. I)

It was concluded that (I) in general, better wetting was achieved

under low gravity conditions than at l-g conditions, and (2)

"...the interfacial segregation of Ti which is of prime impor-

tance for the mechanical strength of brazed joints can be more

accurately adjusted and the influence of the alloy composition

can be better studied in a microgravity environment." (5, p. 356)

Very little additional information concerning this experiment

could be located at this time.

Key Words: Technological Experiments, Brazing, Adhesion of Met-

als, Melt and Solidification, Binary Systems, Ternary Systems,

Metals, Alloys, Hypoeutectics, Hypereutectics, Drops, Substrates,

Vapor Deposition, Ceramics, Wetting, Wetting of Container, Wet-

ting Kinetics, Contact Angle, Free Surface, Surface Tension,

Capillary Forces, Thermocapillary Flow, Liquid Spreading, Mass

Transfer, Meniscus Shape, Segregation, Isothermal Processing,

Solid/Liquid Interface, Liquid/Gas Interface, Interface Physics,

Mechanical Strength, Acceleration Effects, Rocket Motion, Rota-

tion of Payload, Launch-Induced Fluid Motion, Surface Roughness,

Oxidation, Halogen Lamps

Number of Samples: unclear

Sample Materials: Braze metal: (i) CuAgTi (2 wt% Ti), (2) CuAgTi

(5 wt% Ti); substrate materials: (i) alumina, (2) zirconia, (3)

titanium nitride, and (4) Incoloy

(Cu*Ag*Ti*, AI*O*, Zr*O*, Ti*N*)

Container Materials: unclear

Experiment/Material Applications:

"Adhesive bonding has an ever increasing application for the

production of structural joints. The advantages over the common

mechanical joining (riveting, welding) such as simpler design,
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increased fatigue and corrosion resistance, and reduced costs are

sufficient to explain the growth of interest in the use of ad-

hesively bonded structures." (3, p. 860)

Although not specifically stated in the available publications,

it appears this experiment was performed in the reduced gravity
environment to achieve a more uniform distribution of Ti at the

solidification interface (with less segregation than is possible

in l-g) and thus improve the mechanical strength of brazed alloy.

References/Applicable Publications:

(I) Zaar, J. : MASER and Its Effectiveness and Experimental

Results. In: In Space "87, October 13-14, 1987, Japan Space

Utilization Promotion Center, 32 pp. (preflight; very short

description)

(2) Zaar, J. and Dreier, L. : MASER 2 Final Report, RMLOI-7,

August 30, 1988, Swedish Space Corporation, including Appendix 4

and 5. (post-flight)

(3) Kozma, L. and Olefjord, I.: Basic Processes of Surface

Preparation and Bond Formation of Adhesively Joined Aluminum.

Materials Science and Technology, October 1987, Vol. 3, Number

I0. (no space results; details adhesive bonding of aluminum

techniques)

(4) Kozma, L. : Preliminary Report on the MASER-2 Experiment:

"Adhesion of Metals on Ceramic Substrates." In MASER 2 Final

Report, RMLO/I-7, August 30, 1988, Swedish Space Corporation,

Appendix 4 (and 5). (post-flight)

(5) Adhesion of Metals on Ceramic Substrates. In Summary Review

of Sounding Rocket Experiments in Fluid Science and Materials

Sciences, ESA SP-I132, February 1991, pp. 356-357. (post-flight)

Contact(s):

Dr. Laszlo Kozma or R. Warren

Chalmers University of Metals

Department of Metals

S-41296 Goteborg

Sweden
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Principal Investigator(s): Carlberg, T. (i)

Co-Investigator(s): None

Affiliation(s): (1) Department of Casting Metals, Royal Institute

of Technology (RIT), Stockholm, Sweden

Experiment Origin: Sweden
Mission: TEXUS 5

Launch Date/Expt. Date: April 1982

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Ellipsoidal mirror furnace

Builder of Processing Facility: Swedish Space Corporation (SSC),

Solna, Sweden

Experiment:

Soldering of Sn-Aq between Cu Tubes

Early low-gravity brazing experiments, which were performed to

investigate the filling of nickel tubing by AgCuLi (see Williams,

Skylab SL-2, and Bathke, TEXUS 2 (this chapter)) indicated that

while (i) capillary filling of wide gaps was enhanced in the low-

gravity environment, (2) "...increased dissolution of the base

material.., or gravity independent flow.., occurred." (i, p. 337)

Reference (i) reported that the evaluation of the SL-2 and TEXUS

2 results was complicated because (i) the braze-alloy/base-metal

system had not been "fully investigated" at the time the experi-

ments were performed, and (2) only limited control of the tem-

perature cycle was possible. <Note: The specific meaning of

"fully investigated" as used above was not clear to the editors.>

"The objectives of the [TEXUS 5] experiments were to investigate

whether the improved gap filling also occurs during soldering and

to carefully... [analyze] the influence of temperature cycle on

dissolution and solidification in narrow gaps." (i, p. 337)

Reportedly, a "well-known" solder/base-metal system (SnAg-Cu) was

employed for the experiments.

Prior to the mission, three samples were prepared. Each sample

was designed to permit the study of capillary spreading of Sn-Ag

solder between Cu-tubes. The first sample had a cylindrical in-

ner section, resulting in a gap of even width (0.5 mm). The

second sample had a conical inner section in which the gap in-

creased in width from 0.2 mm to 0.7 mm. The third sample had a

conical inner section in which the gap increased from 0.2 to 1.0

mm.
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During the mission, the samples were to be heated in an ellip-
soidal mirror furnace to a temperature beyond the solder melting
point, and allowed to cool. <Note: It is not clear if all three
samples were heated as expected. While (i) Reference (I)
reported that the first and second samples were heated with the
intended temperature profiles but the third was not heated as ex-
pected, (2) Reference (4) did not indicate that any of the
samples were incorrectly processed.> The flight samples were
compared to similarly processed ground-based samples.

The following results were reported:
(a) "...in the cylindrical sample...nearly all the solder con-
tained in the reservoir was sucked into the gap .... This was not
the case in the ground processed samples.
[(b)] the conical sample presenting a gap from 0.20 mm to 0.70 mm
was evenly filled up to a width of 0.56 mm.... The conical sample
where the gap increased from 0.20 mm to 1.0 mm was filled up to
0.58 mm....

"It was concluded that a maximum gap width of close to 0.6 mm can
be filled with the system Cu/Sn-Ag. In the corresponding

reference samples processed on Earth, the gaps were never

uniformly filled up to this width.

"The space and ground samples exhibited different microstruc-

tures, particularly with respect to the volume fraction of the

Cu-Sn phase. But this could be interpreted as the effect of

slightly different temperature/time profiles." (4, p. 354)

It was concluded that the TEXUS low-gravity environment promoted

"...the capillary filling of wider gaps during soldering in the

system Sn-Ag-Cu .... [Theoretical and experimental analyses

indicated]...that small differences in the temperature cycle had

a strong influence on the interaction between the solder and the

base material during dissolution and solidification. Any in-

fluence on the dissolution due to convection could not be

revealed." (i, p. 342)

(A more lengthy discussion of the experiment results can be found

in Reference (i).)

Key Words: Technological Experiments, Soldering, Melt and

Solidification, Surface Tension, Gap Filling, Thermocapillary

Flow, Capillary Forces, Capillary Flow, Liquid Spreading, Wet-

ting, Flux, Dissolution, Convection, Ternary Systems, Alloys,

Metals, Solid/Liquid Interface, Sample Microstructure, Processing

Difficulties
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Number of Samples: three

Sample Materials: Copper tubes; filler material: tin-silver

solder. "The fluxing agent Zn Cl in water solution, was applied

to the inner surfaces of the samples before the inner parts of

the samples were pushed into the outer tubes." (1, p. 337)

(Cu*, Sn*Ag*, Zn*Cl*)
Container Materials: unknown

Experiment/Material Applications:

Experiments employing the "well-known" Sn-Ag-Cu system were

designed to increase the knowledge of capillary flow and solder-

ing under reduced gravity.

References/Applicable Publications :

(1) Carlberg, T. and Liljendahl, M. : Soldering Under

Microgravity. In Proceedings of the 4th European Symposium on

Material Sciences Under Microgravity, Madrid, Spain, April 5-8,

1983, ESA SP-191, pp. 337-342.

(2) Carlberg, T., Fredriksson, H., Sunnerkranz, P-A., Grahn, S.,

and Stenmark, L. : The Swedish TEXUS Experiment - A Technical

Description and Some Preliminary Results. Esrange Symposium

(1978), ESA SP-135, pp. 325-338. (experimental furnace facility)

(3) Input received from Experiment Investigator, May 1988.

(4) Soldering in Microgravity. In Summary Review of Sounding

Rocket Experiments in Fluid Science and Materials Sciences, ESA

SP-I132, February 1991, pp. 354-355. (post-flight)

Contact(s):

T. Carlberg

Department of Casting Metals

Royal Institute of Technology (RIT)
S-100 44 Stockholm

Sweden
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Principal Investigator(s): Alford, G. C. (i)

Co-Investigator(s): Yoel, D. (Payload Manager, Lead Engineer)

(2), Moore, R. G. (Contributor/Customer) (3)

Affiliation(s): (1) During STS-004: Utah State University, Logan,

Utah, Currently: Uniden Corporation of America, Ft. Worth, Texas;

(2) During STS-004: Utah State University, Logan, Utah,

Currently: Heatherington, Inc., Ventura, California; (3) During

STS-004: Morton Thiokol, Brigham City, Utah, Currently: Utah

State University Space Dynamics Laboratory, Logan, Utah

Experiment Origin: USA

Mission: STS Launch #4, STS-004 (STS OFT-4 Columbia)

Launch Date/Expt. Date: June 1982

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment

NASA Get Away Special (GAS) Canister G-001

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-001: Utah State University, Logan,

Utah/R. Gilbert Moore

Processing Facility: Four separate heating and temperature

monitoring units

Builder of Processing Facility: Designed and constructed by prin-

cipal Investigator G. C. Alford at Utah State University, Logan,
Utah

Experiment:

Solderinq (Experiment Number II-M)

This experiment was one of ten investigations housed within the

G-001 Get Away Special Canister during STS-004. Four other ex-

periments (of the ten) were applicable to this data base (see

Dalley, STS-004 (Chapter 5); Elwell, STS-004 (Chapter 12); Laher,

STS-004 (Chapter 17); and Thomas, T. L., STS-004 (Chapter 14)).

The soldering experiment was the first in a series of investiga-

tions designed by Alford et al. to study the separation of flux

from solder. Investigators suspected that in a low-gravity en-

vironment, the "...lack of buoyancy could allow pockets of flux

to become trapped in the solder and significantly lower the

reliability of a joint by reducing its mechanical strength and

electrical conductivity." (I, p. 12)

Ninety-six samples of resin core and coreless solder were to be

melted during the mission. "The samples initially project from a

3.5 X 2.0 inch printed circuit board. A spring behind the PC

board feeds the solder as it melts into the heated foil." (I, p.

12) The resulting flight samples were to be compared to ground-

based solder samples.
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Reportedly, experiment objectives could not be completed as

planned. Data recorder failure coupled with experiment fuse

blowout disrupted the expected experiment procedures.

No further details of this investigation could be located at this
time.

Key Words: Technological Experiments, Soldering, Flux, Melt and

Solidification, Absence of Buoyancy Forces (Detrimental), Separa-

tion of Components, Material Strength, Electrical Conductivity,

Surface Tension, Wetting, Solid/Liquid Interface, Hardware Mal-
function

Number of Samples: 96

Sample Materials: resin core and coreless solder

Container Material: The solder was melted on flat heated copper
foil sheets.

(cu*)

Experiment/Material Applications:

A knowledge of low-gravity solder and flux separation charac-

teristics will be required during in-orbit replacement of dis-

lodged or damaged electronic components. This experiment was

formulated to study the resultant mechanical strength and

electrical conductivity of space-produced solder joints.

References/Applicable Publications:

(i) Yoel, D., Walker, S., Elwell, J., and Moore, G: The First

Getaway Special-How it was Done. Spaceworld, May 1983, pp. 9-16.

(post-flight)

(2) STS-4 Fourth Space Shuttle Mission, NASA Press Kit, June

1982, p. 62. (preflight)

(3) Yoel, D. W. : Payload Integration of a Get Away Special

Canister. American Institute of Aeronautics and Astronautics,

Annual Meeting and Technical Display on Frontiers of Achievement,

Long Beach, California, May 12-14, 1981, 5 pp. (preflight)

(4) The STS-4 Getaway Special.

1982. (preflight)

NASA Report PB82-I0223, May 20,
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(5) Cargo Systems Manual: Gas STS-4. May 20, 1982, JSC-17645,

pp. 4-1 - 4-4. (preflight; very short description)

(6) Overbye, D.: The Getaway Kids Shuttle Into History.

cover, September 1982. (post-flight)

Dis-

(7) Yoel, D. W.: Analysis of the First Getaway Special Space

Shuttle Payload. Thesis for M.S. in Physics, Utah State Univer-

sity, Logan, Utah, 1984. (post-flight)

(8) Moore, R. G.: Educational Implications of Getaway Special

Payload Number One. IAF-81-293, XXXIInd International Astronauti-

cal Federation Congress, Rome, September 6, 1981. (preflight)

(9) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

(I0) "Get Away Special," NASA News, NASA MSFC, June 7, 1982.

(ii) Transcripts of press conference at NASA MSFC with G-001 Stu-

dent Experimenters and Sponsors, NASA, May 20, 1982.

(12) Input received from Principal Investigator G. C. Alford,

July 1993.

Comtact(s):

Chris Alford

Uniden Corp.

4700 Amon Carter Blvd.

Ft. Worth, TX 76155

David Yoel

Heatherington, Inc.

4171 Market Street

Suite C-I

Ventura, CA 93003

R. Gil Moore

Utah State University

Space Dynamics Lab

Logan, UT 84322-4140

18-24



Principal Investigator(s): Alford, G. C. (i)

Co-Investlgator(s}: Megill, L. R. (Payload Manager) (2),
Utah Section of American Institute of Aeronautics and

Astronautics (Purchaser and Donor) (3)

Affiliation(s): (1) Prior to STS-011: Utah State University,

Logan, Utah, Currently: Uniden Corporation of America, Ft. Worth,

Texas; (2) During STS-011: Utah State University Faculty, Logan,

Utah, Currently: ARME Enterprises, Hyrum, Utah; (3) Utah

Experiment Origin: USA

Mission: STS Launch #i0, STS-011 (STS 41-B Challenger)

Launch Date/Expt. Date: February 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment

NASA Get Away Special (GAS) Canister G-008

Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

(This experiment was a reflight of a soldering experiment pre-

viously flown on STS-004 in G-001.)

Primary Developer/Sponsor of this experiment within G-008: Utah

State University, Logan, Utah

Processing Facility: Solder, heating elements, thin metal plates

Builder of Processing Facility: Principal Investigator, G. C. Af-
ford

Experiment:

Soldering Experiment

This experiment was one of four investigations housed within the

G-008 Get Away Special Canister during STS-011. Two other ex-

periments (of the four) were applicable to this data base (see

Gerpheide, STS-011 (Chapter 16); Walden, STS-011 (Chapter 18)).

The soldering experiment was the second in a series of investiga-

tions designed by Alford et al. to study the separation of flux

from solder (see Alford, STS-004). The specific objective of the

experiment was to examine the solder/flux separation characteris-

tics of space-produced solder joints.

The Principal Investigator reported the following:

"Approximately 3 g of SN 60 solder was melted.., and re-

solidified on two flat, heated copper plates. The solder was in

the form of 62 individual samples. The samples were a mixture of

solid, cored, and multi-cored solder wire, and solder paste. The

solder wires were fed linearly into the co_per plates as the

wires melted. The solder paste was divided into sixteen in-

dividual circular samples. Each paste sample was applied

directly to the copper plates. The copper plate that the core-

less solder was melted to was pre-fluxed.
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"Post-flight inspection of the samples for trapped pockets of

flux.., was done with an industrial X-ray microscope. As ex-

pected, no trapped flux was found in the micro-gravity melted

coreless solder. A small percentage of the cored sample melts

contained trapped flux. Most of the multi-core samples contained

some trapped flux. The solder paste samples exhibited only par-

tial melting. Near the heat source, the solder alloy formed

spherical globes within the flux paste. The diameter of the

globes became progressively smaller as distance from the heat

source increased. It is not known whether these spherical globes

would have coalesced into a single mass if more heat had been ap-

plied. Significantly, solder from the paste did wet portions of

the copper foil on which it was melted." (Reference (7))

No other details concerning this experiment could be found.

Key Words: Technological Experiments, Soldering, Flux, Melt and

Solidification, Absence of Buoyancy Forces (Detrimental), Separa-

tion of Components, Material Strength, Electrical Conductivity,

Surface Tension, Wetting, Solid/Liquid Interface

Number of Samples: 62

Sample Materials: resin core, multi-core and coreless solder and

solder paste

Container Material: The solder was melted on flat heated copper
sheets.

(cu*)

Experiment/Material Applications:

See Alford, STS-004.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS-II, JSC-17645 Annex

STS-11, December 2, 1983. (preflight, very short description)

(2) Getaway Special (GAS) Payloads (STS-II). In Goddard Space

Flight Center's Engineering Newsletter, Vol. 2, No. 3, April

1984, published by the Engineering Directorate, pp. 8-9. (very

short description)
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(3) STS-II Getaway Special Payload Descriptions, NASA News, NASA

GSFC, 1984. (preflight)

(4) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

(5) STS 41-B, Tenth Space Shuttle Mission, Press Kit, February

1984, p. 28. (brief mention of experiment; preflight)

(6) STS-II GAS Payloads. NASA Goddard Space Flight Center En-

gineering Newsletter, April 1984.

(7) Input received from Principal Investigator G. C. Alford,

August 1993.

Contact(s):
Chris Alford

Uniden Corp.

4700 Amon Carter Blvd.

Ft. Worth, TX 76155

Rex Megill

ARME Enterprises
96 South I00 West

Hyrum, UT 84319
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Principal Investigator(s): Gross, H. N. (i)

Co-lnvestlgator(s) : Hatelid, Major J. E. (2), Five First-Class

(Senior) Cadets (3)

Affiliatlon(s): (1) During STS-006: United States Air Force

Academy, Colorado Springs, Colorado, Currently: Captain, United

States Air Force Academy, Colorado Springs, Colorado; (2) During

STS-006: Assistant Professor of Astronautics, U.S. Air Force

Academy, Colorado Springs, Colorado, Currently: Unknown; (3)

During STS-006: U.S. Air Force Academy, Colorado Springs,
Colorado

Experiment Origin: USA

Mission: STS Launch #6, STS-006 (STS 31-B, Challenger)

Launch Date/Expt. Date: April 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment

NASA Get Away Special (GAS) canister G-049
Volume of Canister 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-049: The United States Air Force

Academy, Colorado Springs, Colorado

Processing Facility: A heating tool which melted solder at the

connecting points of two beams.

Builder of Processing Facility: Students at the United States Air

Force Academy, Colorado Springs, Colorado

Experiment:
Metal Beam Joiner

This experiment was one of six investigations housed within the

G-049 Get Away Special canister on STS-006. Four other experi-

ments (of the six) were applicable to this data base (see Amidon,

STS-006 (Chapter 14); Neel, STS-006 (Chapter 4); Peter, STS-006

(Chapter 18); Streb, STS-006 (Chapter 14)). The objective of

this experiment was to demonstrate the soldering of beams in a

low-gravity environment.

Few details of the experiment were available (and the descrip-

tions of the experimental setup, as presented in References (I)

and (2), were somewhat unclear). It appears that during the ex-

periment a "63/37" mixture of tin/lead solder (located at the

connection point of a male-ended I/4-inch brass beam and a

female-ended i/4-inch brass beam) was melted using a 48 watt (16

volt) wire wrapped heating tool. Upon hardening, the solder

joined the two i/4-inch beams together.

Post-flight analysis of the connection indicated that the solder

had bonded the two beams together.
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Bond strength tests were performed on beams which had been

soldered on the ground and these results related to the space

produced bond (the single flight bond did not actually undergo

tension tests): "In 1983 an Air Force Laboratory performed non-

destructive testing by comparing X-rays of the space beam and 12

ground soldered beams to check for significant voids. The space

beam fell within the range of ground-soldered results. With only

a single sample, we made no statement as to the statistical sig-

nificance of the result." (6)

<Note: It appears based on this result, the space bond was ex-

pected to be able to withstand well over 174 kg of tension.>

More detailed information concerning the experiment could not be
located at this time.

Key Words: Technological Experiments, Soldering, Welding, Melt

and Solidification, Material Strength, Surface Tension, Wetting,

Solid/Liquid Interface

Number of Samples: two beams

Sample Materials: I/4-inch brass beams joined with

mixture of lead-tin solder

(Cu*Zn*, Pb*Sn*)

Container Materials: unknown

a "67/37"

Experiment/Material Applications:

Although this experiment used solder to form a bond between two

beams, the investigators indicated that the research concept

could be extended for future welding endeavors. Construction of

space structures (or the repair of existing structures) may

require welding of materials in the low-gravity, space environ-
ment.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS-6, JSC-17645 Annex

STS-6, December 3, 1982. (very short summary; preflight)

(2) Swan, P. and Worsowicz, C.: The Eaglets Have Flown. Space

Education, Vol. i, No. 7, May 1984, pp. 317-319. (post-flight)
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(3) STS-6 Getaway Specials. NASA News, NASA GSFC, November 24,

1982. (preflight)

(4) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

(5) NASA STS-6 Sixth Space Shuttle Mission Press Kit, April 1983,

pp. 41-43. (preflight)

(6) Input received from Principal Investigator H. G. Gross,

August 1993.

Contact(s):

Captain Harry Neal Gross

c/o Department of Astronautics

USAFA/DFAS

United States Air Force Academy, CO 80840
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Principal Investigator(s): EDSYN, Inc. (i)

Co-Investigator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s): (1) Van Nuys, California; (2) EDSYN, Inc., Van

Nuys, California

Experiment Origin: USA
Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088

Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-088: EDSYN, Inc., Van Nuys,

California

Processing Facility: System consisting of (1) a printed circuit

board/copper clad assembly, (2) heater, and (3) solid-core

solder

Builder of Processing Facility: Unknown, probably: EDSYN, Inc.,

Van Nuys, California

Experiment:
Solder Flux Selection Test (Dynamic Experiment #i)

This experiment was one of nine solder-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments). The objective of this particular experiment

(designated as Dynamic Experiment #i) was to determine which type
of flux was best suited for use during low-gravity soldering.

Assembly of the experiment cell took place prior to flight.

During this assembly, a circular section of "copper clad,"

divided into four equal quadrants, was attached to a larger-

diameter circular section of printed circuit board. Each quad-

rant on the clad was coated with a different flux material. The

clad/board assembly was mounted against a heater. Solid-core

solder, which was wrapped around the heater, was spring loaded at

one end against the clad.

The experiment cell was placed within a sealed, hollow aluminum

tube. A filter at one end of the tube was configured to collect

debris created during the experiment; a view glass at the other

end was configured to collect vapor samples resulting from the

experimental process. Alkaline dioxide primary cell batteries

provided power for the heater.

The experiment cell was configured within Get Away Special

canister G-088. Prior to the STS-007 flight, the canister was

evacuated to a 1 Torr vacuum level (a vacuum similar to that of
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the space environment).

During the experiment, as the solder was melted, the spring-

loading arrangement forced the solder onto the copper. Flow

properties and wetting characteristics of the flux-coated clad

were observed.

A ground-based reference experiment was performed for comparison.

Photographs of the clad/heater assembly were taken before and

after the ground-based experiments were performed.

Reportedly, during the space experiment, the solder unexpectedly

"...bunched up at the end of the heater.., where it was forced by

the spring .... " (i, p. 7) Very little solder flowed onto the

clad. The flux on all four quadrants melted "...and the fumes

were deposited on the inside of the tube, on the view glass and

in the filter. The quantity of deposits was much thicker than

expected." (I, p. 7)

During the ground-based experiment, the solder melted, flowed

onto the clad, and spread over the copper. Gravity and surface

wetting forces were responsible for the resultant fluid flow.

No further information concerning the space results of Dynamic

Experiment #I appear to be available at this time.

Key Words: Technological Experiments, Soldering, Flux, Melt and

Solidification, Wetting, Surface Tension, Liquid Spreading,

Coated Surfaces, Solid/Liquid Interface, Vaporization, Vapor

Deposition, Vacuum

Number of Samples: one demonstration unit

Sample Materials: (i) solid-core solder, (2) four different flux

materials, (3) copper clad, and (4) printed circuit board

(Cu*)
Container Materials: A sealed, hollow aluminum tube

(AI*)

Experiment/Material Applications:

The soldering-related experiments were performed to (i) examine

the physics of solder alloying and (2) identify complications

arising from debris and fume production in a low-gravity (or

vacuum) environment.
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The research, which is related to spacecraft repairs or other

repair tasks, was performed in a low-gravity, vacuum environment.

Thus, it applies to repairs performed in the (outer) space en-

vironment rather than to repairs performed within the pressurized

vehicle environment.

References/Applicable Publications:

(i) EDSYN NASA Payload No. 88, STS-7. Preliminary report,

available from EDSYN Soldering Products, Inc., Van Nuys, Califor-

nia, 18 pp. (post-flight)

(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April I, 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit,

1983, p. 56. (preflight)

June

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special Canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406

William S. Fortune

President of EDSYN, Inc.

15958 Arminta Street

Van Nuys, CA 91406
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Principal Investigator(s): EDSYN, Inc. (i)

Co-Investigator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s): (i) Van Nuys, California; (2) EDSYN, Inc., Van

Nuys, California

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-08S: EDSYN, Inc., Van Nuys,
California

Processing Facility: Four copper wires attached to a heating ele-

ment. Each copper wire was wrapped with solid-core solder and

coated with flux.

Builder of Processing Facility: Unknown, probably: EDSYN, Inc.,

Van Nuys, California

Experiment:

Solder Wettinq and Surface Tension I (Dynamic Experiment #2)

This experiment was one of nine soldering-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments). The objective of this particular experiment

(designated as Dynamic Experiment #2) was to determine the wet-

ting and surface tension characteristics of solder on copper
wire.

Assembly of the experiment cell took place prior to the flight.

During this assembly, four pieces of copper wire were each bent

into a circle and attached to a cylindrical heating element. The

four circles were configured at different locations around the

heating element such that together they formed three log-tapered

wire gaps. Solid-core solder, coated with a "mildly activated

flux," was wrapped around each of the four wire circles.

The experiment cell was contained within a sealed, hollow

aluminum tube. A filter at one end of the tube was configured to

collect debris created during the experiment; a view glass at the

other end was configured to collect vapor samples resulting from

the experiment process. Alkaline dioxide primary cell batteries

provided power for the cylindrical heating element.

The experiment cell was configured within Get Away Special

canister G-088. Prior to flight, the canister was evacuated to a

1 Torr vacuum level (a vacuum similar to that of the space
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environment) .

During the space experiment, the solder was melted and solder

flow characteristics over the copper wire observed. A ground-

based reference experiment was performed for comparison.

Photographs of the heater/circle assembly were taken before and

after the space- and ground-based experiments were performed.

Reportedly, during the space experiment, the solder bridged the

wire gaps and formed a single, very large, lumpy sphere between

two of the wire circles.

During the ground-based experiment, the solder flowed around the

wires. No bridging of the wire gaps occurred. The gravity com-

ponent acting on the system forced excess solder to accumulate on

the wire circle oriented closest to the ground. The excess

solder solidified on this bottom wire (at the point on the circle

closest to the ground) in the shape of a sphere.

After all nine experiments within the canister were evaluated, it

was concluded that (i) if proper precautions are taken, the con-

trol of solder debris is not a significant problem, (2) "Molten

solder flowed along the solder path with almost all of it adher-

ing to the item being soldered, and (3) Conversely[,] solder flux

is difficult to control since when heated it vaporizes and gen-

erates fumes." (i, p. 16)

Key Words: Technological Experiments, Soldering, Flux, Melt and

Solidification, Wetting, Surface Tension, Surface Tension Mini-

mum, Liquid Spreading, Coated Surfaces, Solid/Liquid Interface,

Vaporization, Vacuum

Number of Samples: one demonstration unit

Sample Materials: solid-core solder, four copper wires, flux

(Cu*)
Container Materials: a sealed, hollow aluminum tube

(AI*)

Experiment/Material Applications:

The soldering-related experiments were performed to (i) examine

the physics of solder alloying and (2) identify complications

arising from debris and fume production in a low-gravity (or
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vacuum) environment.

The research, which is related to spacecraft repairs or other

repair tasks, was performed in a low-gravity, vacuum environment.

Thus, it applies to repairs performed in the (outer) space en-

vironment rather than to repairs within the pressurized vehicle

environment.

References/Appllcable Publications:

(I) EDSYN NASA Payload No. 88, STS-7. Preliminary report,

available from EDSYN Soldering Products, Inc., Van Nuys, Califor-

nia, 18 pp. (post-flight)

(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April i, 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit, June

1983, p. 56. (preflight)

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.

15958 Arminta Street

Van Nuys, CA 91406

William S. Fortune

President of EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406
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Principal Investigator(s): EDSYN, Inc. (i)

Co-Investigator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s): (i) Van Nuys, California; (2) EDSYN, Inc., Van

Nuys, California

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088

Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-088: EDSYN, Inc., Van Nuys,

California

Processing Facility: A section of (1) round wire, (2) flat wire,

and (3) copper braid attached to a solder tip. Each section was

wrapped with solid-core solder and coated with flux.

Builder of Processing Facility: Unknown, probably: EDSYN, Inc.,

Van Nuys, California

Experiment:

Wetting and Surface Tension II: Solder Flow and Bridging Test

(Dynamic Experiment #3)

This experiment was one of nine solder-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments). The objective of this particular experiment

(designated as Dynamic Experiment #3) was to determine "...the

wetting and surface tension characteristics that relate to the

ability of solder [i] to bridge gaps and [2] to flow." (i, p. 9)

Assembly of the experiment cell took place prior to flight.

During this assembly, a section of copper braid, a section of

round wire, and a section of flat wire were each wrapped with

solid-core solder and then coated with flux. All three sec-

tions were then attached to one soldering tip at different loca-

tions. The round wire was attached perpendicular to the lon-

gitudinal axis of the tip; the braid was attached parallel to

the longitudinal axis of the tip (out the top of the tip); the

flat wire was attached perpendicular to the longitudinal axis of

the tip, 180 ° from the round wire. <Note: It is not clear if

the round and flat wires were made of copper.>
/

The experiment cell was placed within a sealed, hollow aluminum

tube. A filter at one end of the tube was configured to collect

debris created during the experiment; a view glass at the other

end was configured to collect vapor samples resulting from the

process. Alkaline dioxide primary cell batteries provided power
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for the solder tip.

The experiment cell was configured within Get Away Special

canister G-088. Prior to flight, the canister was evacuated to a

1 Torr vacuum level (a vacuum similar to that of the space
environment).

During the experiment, the solder was melted.

characteristics were examined.
Wetting and flow

A ground-based reference experiment was performed for comparison.

Photographs of the solder-tip/solder-section assembly were taken

before and after the space- and ground-based experiments were

performed.

Reportedly, during the space experiment, "Solder flowed out onto

three surfaces in a smooth even manner with excess solder cover-

ing the entire length of the braid. All surfaces showed excel-

lent wetting." (i, p. 9)

During the ground-based experiment, the solder essentially

"...flowed the same on all three surfaces, but flowed further on

the copper braid." (i, p. 9) <Note: The orientation of the

solder-tip/solder-section assembly with respect to gravity was

not detailed in Reference (i).>

After all nine experiments within the canister were evaluated, it

was concluded that (i) if proper precautions are taken, the con-

trol of solder debris is not a significant problem, (2) "Molten

solder flowed along the solder path with almost all of it adher-

ing to the item being soldered, and (3) Conversely[,] solder flux

is difficult to control since when heated it vaporizes and gen-

erates fumes." (i, p. 16)

Key Words: Technological Experiments, Soldering, Flux, Melt and

Solidification, Gap Filling, Wetting, Surface Tension, Liquid

Spreading, Solid/Liquid Interface, Coated Surfaces, Vaporization,
Vacuum

Number of Samples: one demonstration unit

Sample Materials: solid-core solder, flux, wire, copper braid

(cu*)
Container Materials: A sealed, hollow aluminum tube

(AI*)
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Experiment/Material Applications:

The type of copper braid employed in the experiment is commonly

used for electrical grounding or solder removal.

The soldering-related experiments were performed to (i) examine

the physics of solder alloying and (2) identify complications

arising from debris and fume production in a low-gravity (or

vacuum) environment.

The research, which is related to spacecraft repairs or other

repair tasks, was performed in a low gravity, vacuum environment.

Thus, it applies to repairs performed in the (outer) space en-

vironment rather than to repairs performed within the pressurized

vehicle environment.

References�Applicable Publications:

(i) EDSYN NASA Payload No. 88, STS-7. Preliminary report,

available from EDSYN Soldering Products, Inc., Van Nuys, Califor-

nia, 18 pp. (post-flight)

(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April 1 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit,

1983, p. 56. (preflight)

June

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406

William S. Fortune

President of EDSYN, Inc.

15958 Arminta Street

Van Nuys, CA 91406
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Principal Investigator(s): EDSYN, Inc. (i)

Co-Investigator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s): (1) Van Nuys, California; (2) EDSYN, Inc., Van

Nuys, California

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088

Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-088: EDSYN, Inc., Van Nuys,

California

Processing Facility: Eyelet and turret solder post attached to

the end of soldering tip

Builder of Processing Facility: Unknown, probably EDSYN, Inc.,

Van Nuys, California

Experiment:

Metallurgical Properties: Eyelet and Post Soldering Test

(Dynamic Experiment #4)

This experiment was one of nine solder-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments). The objective of this particular experiment

(designated as Dynamic Experiment #4) was to observe solder flow

into an eyelet and onto a turret solder post.

Assembly of the experiment cell took place prior to flight.

During the assembly, an eyelet and post were attached to the end

of a soldering tip.

The experiment cell was contained within a sealed, hollow

aluminum tube. A filter at one end of the tube was configured to

collect debris created during the experiment; a view glass at the

other end was configured to collect vapor samples resulting from

the experimental process. Alkaline dioxide primary cell batteries

provided power to the soldering tip.

The experiment cell was configured within Get Away Special

canister G-088. Prior to the STS-007 flight, the canister was

evacuated to a 1 Torr vacuum level (a vacuum similar to that of

the space environment).

During the experiment, the solder was melted. <Note: The initial

solder placement was not detailed in Reference (I).>
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A ground-based reference experiment was performed for comparison
purposes. Photographs of the soldering tip assembly were taken
before and after the space- and ground-based experiments were
performed.

Reportedly, during the space experiment, "The solder melted and
flowed evenly around the turret post. The eyelet filled with
solder and formed a raised area of solder on both sides of the
eyelet. (convex) (unexpected)." (i, p. i0)

During the ground-based experiment, "Solder flowed evenly onto
the two sections. The turret post soldered normally and the hole
simulating an eyelet filled with solder. The solder showed a
slight depression (concave) on the top side of the eyelet due to
normal surface tension and gravity." (i, p. i0)

After all nine experiments within the canister were evaluated, it
was concluded that (i) if proper precautions are taken, the con-
trol of solder debris is not a significant problem, (2) "Molten
solder flowed along the solder path with almost all of it adher-
ing to the item being soldered, and (3) Conversely[,] solder flux
is difficult to control since when heated it vaporizes and gen-
erates fumes." (i, p. 16)

Key Words: Technological Experiments, Soldering, Melt and
Solidification, Gap Filling, Wetting, Surface Tension, Liquid
Spreading, Solid/Liquid Interface, Vaporization, Vacuum

Number of Samples: one demonstration unit
Sample Materials: solder, eyelet, turret solder post (specific
materials were unspecified)
Container Materials: a sealed, hollow aluminum tube
(AI*)

Experiment/Material Applications:

The soldering-related experiments were performed to (i) examine

the physics of solder alloying and (2) identify implications

arising from debris and fume production in a low-gravity (or

vacuum) environment.
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The research, which is related to spacecraft repairs or other

repair tasks, was performed in a low gravity, vacuum environment.

Thus, it applies to repairs performed in the (outer) space en-

vironment rather than to repairs performed within the pressurized

vehicle environment.

Eyelets and turret solder posts are wire attachment points often

employed in circuit assemblies.

References/Applicable Publications:

(I) EDSYN NASA Payload No. 88, STS-7. Preliminary report, avail-

able from EDSYN Soldering Products, Inc., Van Nuys, California,

18 pp. (post-flight)

(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April i, 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit,

1983, p. 56. (preflight)

June

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406

William S. Fortune

President of EDSYN, Inc.

15958 Arminta Street

Van Nuys, CA 91406
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Principal Investigator(s): EDSYN, Inc. (1)

Co-Investigator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s): (1) Van Nuys, California; (2) EDSYN, Inc., Van

Nuys, California

Experiment Origin: USA

Missionz STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-088: EDSYN, Inc., Van Nuys,
California

Processing Facility: Integrated circuit/printed circuit board as-

sembly

Builder of Processing Facility: Unknown, probably EDSYN, Inc.,

Van Nuys, California

Experiment:

Solder Removal: Integrated Circuit Removal Test

(Dynamic Experiment #5)

This experiment was one of nine solder-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments). The objectives of this particular experiment

(designated as Dynamic Experiment #5) were to (i) remove an in-

tegrated circuit from a printed circuit board, and (2) determine

the quantity of debris resulting from the removal. The circuit

was to be extracted by a non-conventional method.

Assembly of the experiment cell took place prior to flight.

During the assembly, it appears that a spring was compressed un-

der the integrated circuit during soldering of the component to

the board. Apparently, when the attachment solder was melted,

the circuit was to be pushed away from the board by the spring.

The experiment cell was contained within a sealed, hollow

aluminum tube. A filter at one end of the tube was configured to

collect debris created during the experiment; a view glass at the

other end was configured to collect vapor samples resulting from

the experimental process. Alkaline dioxide primary cell bat-

teries provided power for the solder melting.

The experiment cell was configured within Get Away Special

canister G-088. Prior to STS-007 flight, the canister was

evacuated to a 1 Torr vacuum level (a vacuum similar to that of

the space environment).
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A ground-based reference experiment was performed for comparison.

Photographs of the circuit/board assembly were taken before and

after the space- and ground-based experiments were performed.

Reportedly, during the space experiment, "The solder did not melt

properly due to lower than expected temperatures inside the

payload." (I, p. ii)

During the ground-based experiment, "The solder melted, the

spring pulled the integrated circuit out of the circuit board and

the solder debris fell into the bottom of the tube." (i, p. ii)

No additional information concerning Dynamic Experiment #5 could
be located at this time.

Key Words: Technological Experiments, Solder Removal, Melt and

Solidification, Solid/Liquid Interface, Vaporization, Vacuum,

Thermal Environment More Extreme Than Predicted, Sample Not
Processed as Planned

Number of Samples: one demonstration unit

Sample Materials: solder, integrated circuit, printed circuit

board, spring

Container Materials: a sealed, hollow aluminum tube

(AI*)

Experlment/Material Applications:

The soldering-related experiments were performed to (i) examine

the physics of solder alloying and (2) identify complications

arising from debris and fume production in a low-gravity (or

vacuum) environment.

The research, which is related to spacecraft repairs or other

repair tasks, was performed in a low gravity, vacuum environment.

Thus, it applies to repairs performed in the (outer) space en-

vironment rather than to repairs performed within the pressurized
vehicle environment.

References/Applicable Publications:

(i) EDSYN NASA Payload No. 88, STS-7. Preliminary report, avail-

able from EDSYN Soldering Products, Inc., Van Nuys, California,

18 pp. (post-flight)
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(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April i, 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit, June

1983, p. 56. (preflight)

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406

William S. Fortune

President of EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406
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Principal Investigator(s): EDSYN, Inc. (i)

Co-Investigator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s): (i) Van Nuys, California; (2) EDSYN, Inc., Van
Nuys, California

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-088: EDSYN, Inc., Van Nuys,
California

Processing Facility: A pressure chamber connected to a metal tube

was attached to a hollow soldering tool.

Builder of Processing Facility: Unknown, probably EDSYN, Inc.,
Van Nuys, California

Experiment:

Desolderinq II: Pressure Desolderinq Demo (Dynamic Experiment #6)

On Earth, excess molten solder is usually removed by suction. If

solder removal is to be achieved in the space vacuum environment,

however, an alternate method must be employed.

This experiment was one of nine solder-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments). The objective of this particular experiment

(designated as Dynamic Experiment #6) was to determine if pres-

sure could be employed to remove excess solder.

Assembly of the experiment cell took place prior to flight.
During this assembly, a small pressure chamber connected to a

metal tube was attached to a hollow soldering tool. The solder-

ing tool had a hole through its tip. It appears that a heater

surrounded the soldering tool. When the tip was heated to the

solder's melting point during the experiment, the pressurized air

was to be released and the solder blown from the hole.

The experiment cell was contained within a sealed, hollow

aluminum tube. A filter at one end of the tube was configured to

collect debris created during the experiment; a view glass at the

other end was configured to collect vapor samples resulting from

the process. Alkaline dioxide primary cell batteries provided
power for the heater.
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The experiment cell was configured within Get Away Special
canister G-088. Prior to the STS-007 flight, the canister was
evacuated to a 1 Torr vacuum level (a vacuum similar to that of
the space environment).

A ground-based reference experiment was performed for comparison.
Photographs of the soldering tool assembly were taken before and
after the space- and ground-based experiments were performed.

Reportedly, during the space experiment, the solder melted and
all of the solder was blown to the end of the experiment con-
tainer.

During the ground-based experiment, the solder melted and some of
the solder fell to the bottom of the experiment container; the
rest of the solder was blown to the end of the container.

After all nine experiments within the canister were evaluated, it
was concluded that (i) if proper precautions are taken, the con-
trol of solder debris is not a significant problem, (2) "Molten
solder flowed along the solder path with almost all of it adher-
ing to the item being soldered, and (3) Conversely[,] solder flux

is difficult to control since when heated it vaporizes and gen-

erates fumes." (I, p. 16)

Key Words: Technological Experiments, Solder Removal, Melt and

Solidification, Gas Pressure, Solid/Liquid Interface, Vaporiza-

tion, Vacuum

Number of Samples: one demonstration unit

Sample Materials: solder

Container Materials: a sealed, hollow aluminum tube

Experiment/Material Applications:

The soldering-related experiments were performed to (i) examine

the physics of solder alloying and (2) identify complications

arising from debris and fume production in a low-gravity (or

vacuum) environment.

The research, which is related to spacecraft repairs or other

repair tasks, was performed in a low-gravity, vacuum environment.

Thus, it applies to repairs performed in the (outer) space en-
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vironment rather than to repairs performed within the pressurized
vehicle environment.

EDSYN has a product which employs hot air for solder removal

rather than suction. This experiment demonstrated the solder

removal via a method other than the suction procedure.

References/Applicable Pu_licatlons:

(i) EDSYN NASA Payload No. 88, STS-7. Preliminary report, avail-

able from EDSYN Soldering Products, Inc., Van Nuys, California,

18 pp. (post-flight)

(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April I, 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit,

1983, p. 56. (preflight)

June

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406

William S. Fortune

President of EDSYN, Inc.

15958 Arminta Street

Van Nuys, CA 91406
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Principal Investigator(s): EDSYN, Inc. (1)

Co-Investlgator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s]: (1) Van Nuys, California; (2) EDSYN, Inc., Van

Nuys, California

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-088: EDSYN, Inc., Van Nuys,
California

Processing Facility: EDSYN, Inc., LonerTM temperature controlled
soldering tool

Builder of Processing Facility: EDSYN, Inc., Van Nuys, California

Experiment:

Electronically Controlled Solder Tip Demo with Flux (Dynamic Ex-

periment #7)

This experiment was one of nine solder-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments). The objective of this particular experiment

(designated as Dynamic Experiment #7) was to verify the operation

of an EDSYN, Inc., LonerTM temperature-controlled soldering tool
in a low-gravity, vacuum environment.

The electronic temperature control circuitry of this standard

model tool was not modified for the experiment. Flux was used to

improve solder flow. <Note: The initial placement of the solder

was not detailed in Reference (i).>

The soldering tool with solder was contained within a sealed,

hollow aluminum tube. A filter at one end of the tube was con-

figured to collect debris created during the experiment; a view

glass at the other end was configured to collect vapor samples

resulting from the experimental process. Alkaline dioxide

primary cell batteries provided power for the soldering tool.

The experiment cell was configured within Get Away Special

canister G-088. Prior to flight, the caniste_ was evacuated to a

1 Torr vacuum level (a vacuum similar to that of the space

environment). <Note: Additional details of the in-flight ex-

perimental setup and procedure were not presented in the avail-
able documents.>
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A ground-based reference experiment was performed for comparison.
Photographs of the soldering tool assembly were taken before and
after the space- and ground-based experiments were performed.

Reportedly, during the space experiment, the control circuit
"...operated properly and solder melted normally." (i, p. 13)

During the ground-based experiment, the control circuitry
operated properly. The "...solder flowed normally and coated
uniformly." (i, p. 13)

After all nine experiments within the canister were evaluated, it
was concluded that (I) if proper precautions are taken, the con-
trol of solder debris is not a significant problem, (2) "Molten
solder flowed along the solder path with almost all of it adher-
ing to the item being soldered, and (3) Conversely[,] solder flux
is difficult to control since when heated it vaporizes and gen-
erates fumes." (i, p. 16)

No additional information concerning Dynamic Experiemnt #7 could
be located at this time.

Key Words: Technological Experiments, Soldering, Flux, Soldering-
Related Tools, Melt and Solidification, Wetting, Surface Tension,
Liquid Spreading, Solid/Liquid Interface, Vaporization, Vacuum

Number of Samples: one demonstration unit
Sample Materials: solder
Container Materials: a sealed, hollow aluminum tube

(AI*)

Experiment/Material Applications:

The soldering-related experiments were performed to (i) examine

the physics of solder alloying and (2) identify complications

arising from debris and fume production in a low-gravity (or

vacuum) environment.

The research, which is related to spacecraft repairs or other

repair tasks, was performed in a low-gravity, vacuum environment.

Thus, it applies to repairs performed in the (outer) space en-

vironment rather than to repairs performed within the pressurized

vehicle environment.
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This experiment tested the operation of a standard (off-the-

shelf) temperature-controlled soldering tool in the low-gravity,

vacuum environment.

References/Appllcable Publications:

(i) EDSYN NASA Payload No. 88, STS-7. Preliminary report,

available from EDSYN Soldering Products, Inc., Van Nuys, Califor-

nia, 18 pp. (post-flight)

(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April I, 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit,

1983, p. 56. (preflight)

June

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406

William S. Fortune

President of EDSYN, Inc.

15958 Arminta Street

Van Nuys, CA 91406
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Principal Investigator(s): EDSYN, Inc. (1)

Co-Investigator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s): (I) Van Nuys, California; (2) EDSYN, Inc., Van

Nuys, California

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-088: EDSYN, Inc., Van Nuys,
California

Processing Facility: EDSYN, Inc., LonerTM temperature controlled

soldering tool

Builder of Processing Facility: EDSYN, Inc., Van Nuys, California

Experiment:

Electronically Controlled Solder Tip Demo Without Flux (Dynamic

Experiment #8)

This experiment was one of nine solder-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments) . The objective of this particular experiment

(designated as Dynamic Experiment #8) was to verify the operation

of an EDSYN, Inc., LonerTM temperature-controlled soldering tool

in a low-gravity, vacuum environment. (The electronic

temperature-control circuitry of this standard model soldering

tool was not modified for the experiment.)

Dynamic Experiment #8 was very similar to Dynamic Experiment #7

(see EDSYN, STS-007, Dynamic Experiment #7) except that during

Experiment #8, no flux was employed to aid the solder flow.

<Note: Initial placement of the solder was not detailed in

Reference (i).>

The STS-007 soldering tool with solder was contained within a

sealed, hollow aluminum tube. A filter at one end of the tube was

configured to collect debris created during the experiment; a

view glass at the other end was configured to collect vapor

samples resulting from the process. Alkaline dioxide primary

cell batteries provided power for the soldering tool.

The experiment cell was configured within Get Away Special

canister G-088. Prior to flight, the canister was evacuated to a

1 Torr vacuum level (a vacuum similar to that of the space

environment).

18-52



A ground-based reference experiment was performed for comparison.

Photographs of the soldering tool assembly were taken before and

after the space- and ground-based experiments were performed.

Reportedly, during the space experiment, "The solder melted

slightly but did not adhere." (i, p. 13)

During the ground-based experiment, "The solder melted, adhered

poorly to the tip and hung over the side of the tip." (i, p. 13)

Additional information concerning Dynamic Experiment #8 could not

be located.

Key Words: Technological Experiments, Soldering, Soldering-

Related Tools, Melt and Solidification, Wetting, Surface Tension,

Liquid Spreading, Solid/Liquid Interface, Vaporization, Vacuum

Number of Samples: one demonstration unit

Sample Materials: solder

Container Materials: a sealed, hollow aluminum tube

(AI*)

Experiment/Material Applications:

The soldering-related experiments were performed to (i) examine

the physics of solder alloying and (2) identify complications

arising from debris and fume production in a low-gravity (or

vacuum) environment.

The research, which is related to spacecraft repairs or other

repair tasks, was performed in a low-gravity, vacuum environment.

Thus, it applies to repairs performed in the (outer) space en-

vironment rather than to repairs performed within the pressurized

vehicle environment.

This experiment tested the operation of a standard (off-the-

shelf) temperature-controlled soldering tool _n the low-gravity,
vacuum environment.
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References/Applicable Publications:

(i) EDSYN NASA Payload No. 88, STS-7. Preliminary report, avail-

able from EDSYN Soldering Products, Inc., Van Nuys, California,

18 pp. (post-flight)

(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April I, 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit,

1983, p. 56. (preflight)

June

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.

15958 Arminta Street

Van Nuys, CA 91406

William S. Fortune

President of EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406
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Principal Investigator(s): EDSYN, Inc. (1)

Co-Investigator(s): Fortune, W. S. (President, EDSYN, Inc.) (2)

Affiliation(s): (i) Van Nuys, California; (2) EDSYN, Inc., Van

Nuys, California

Experiment origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-088
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-088: EDSYN, Inc., Van Nuys,

California

Processing Facility: None, passive experiment

Builder of Processing Facility: Not Applicable

Experiment:

Product Exposure Test (Experiment #9)

This experiment was one of nine solder-related investigations

contained within the G-088 Get Away Special canister during the

STS-007 mission (see EDSYN, STS-007 to review the other eight

experiments). The objective of this experiment was to determine

the effect of a low-gravity, vacuum environment on the perfor-

mance of standard products/tools which might be used during fu-

ture space missions.

A variety of items from companies such as (i) EDSYN, Inc., Van

Nuys, California, (2) Hakko Metals, Co. Ltd., Osaka, Japan, and

(3) ERSA, West Germany, were contained in eight storage drawers

within the GAS canister. These items included soldering irons,

assorted heaters, a temperature meter, electronic shears, a

resoldering wick, vacuum pump plugs, a syringe, a check valve, an

aluminum tip, a vacuum exhaust tool, a solder extractor heater,

and a soldering tool holder. (See Reference (i), p. 15 for a

detailed listing of the contents of each drawer. Model numbers

are listed.)

All of the items were tested on Earth and in working order prior

to the STS-007 flight. After placement of the items in the G-088

payload, the canister was evacuated to a 1 Torr vacuum level (a

vacuum similar to that of the space environment).

Reportedly, all of the items were to be tested and evaluated

after the mission. At the time Reference (i) was published,

however, not all of the products had been tested. It was noted

that all of the items which had been tested thus far

"...function[ed] the same as before the flight with no degrada-
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tion in performance." (i, p. 13)

Key Words: Technological Experiments, Soldering-Related Tools,
Vacuum

Number of Samples: See Reference (I), p. 15.

Sample Materials: Please refer to the experiment summary above.

Container Materiels: not applicable

Experiment/Material Applications:

"The tests were performed to determine if standard hand tools

selected for space repair tasks would be able to withstand the

rigors of outer space." (1, p. 4)

References/Applicable Publications:

(i) EDSYN NASA Payload No. 88, STS-7. Preliminary report, avail-

able from EDSYN Soldering Products, Inc., Van Nuys, California,

18 pp. (post-flight)

(2) "STS-7 Cargo Systems Manual: GAS," JSC-17645 Annex 7 Basic

Version PCN-I, NASA JSC, April I, 1983. (very short description;

preflight)

(3) "STS-7 Getaway Specials," NASA News, NASA GSFC, May 1983.

(4) NASA STS-7 Seventh Space Shuttle Mission Press Kit,

1983, p. 56. (preflight)

June

(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

Contact(s):

Wayne A. Murray

EDSYN, Inc.
15958 Arminta Street

Van Nuys, CA 91406
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William S. Fortune
President of EDSYN, Inc.
15958 Arminta Street
Van Nuys, CA 91406
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Principal Investigator(s}: Unknown, possibly a student at Utah

State University, Logan, Utah

Co-Investigator(s} : Megill, L. R. (Payload Manager) (1), Utah

State University/Jensen, B. C. (Contributor/Customer) (2)

Affiliation(s) : (1) During STS-017: Utah State University

Faculty, Logan, Utah, Currently: ARME Enterprises, Hyrum, Utah;

(2) Logan, Utah

Experiment Origin: USA

Mission: STS Launch #13, STS-017 (STS 41-G, Challenger)

Launch Date/Expt. Date: October 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment

NASA Get Away Special (GAS) Canister G-518
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-518: Utah State University, Logan,
Utah

Processing Facility: Solder, heating elements, thin metal plates

Builder of Processing Facility: Unknown, possibly Utah State

University, Logan, Utah

Experiment:

Solder-Flux Separation (Reflight of G-008 Soldering Experiment)

This experiment was one of four investigations housed within the

G-518 Getaway Special Canister during STS-017. The three other

experiments (of the four) were applicable to this data base (see

Kitaura, STS-017 (Chapter 2); Thomas, S., STS-017 (Chapter 12);

Walden, STS-017 (Chapter 15)).

Although information published prior to the STS-017 mission indi-

cated that this experiment was a reflight of a soldering experi-

ment by G. C. Alford (see Alford, STS-011, Get Away Special (GAS)

canister G-008 (this chapter)), Afford verified that he was not

the Principal Investigator of this investigation.

Few details describing the experimental setup and objectives

could be located. Reference (I), which was released prior to the

launch of STS-017, briefly described the expected experiment

scenario. During the low gravity mission, "Solder is melted on

two thin metal plates on opposite sides of the heating ele-

ment .... " (i, p. 2-7) The space-produced solder joints "...will

be studied to determine the characteristics of the separation of

solder and flux." (i, p. 2-7).

Only a very brief discussion of the experimental results could be

located. Reportedly, the experiment proceeded as planned, but

the flight samples appeared to have melted at a slower rate than

18-58



ground-based reference samples. It was suspected that this

slower melting rate was due to either (i) a colder than expected

GAS canister temperature or (2) low battery pack voltage.

No further discussion of the experiment could be located.

Key Words: Technological Experiments, Soldering, Flux, Melt and

Solidification, Separation of Components, Surface Tension, Wet-

ting, Solid/Liquid Interface, Material Strength, Thermal Environ-

ment More Extreme Than Predicted, Processing Difficulties, Bat-

tery Voltage Too Low

Number of Samples: unknown

Sample Materials: unknown, possibly samples of resin core and
coreless solder

Container Material: The composition of the contacting metal

plates was not identified.

Experiment/Material Applications:

See Alford, STS-004.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS 41-G. JSC-17645 41-

G, September 4, 1984. (short description; preflight)

(2) Space Shuttle Mission 41-G Press Kit, October 1984, pp. 24-

25. (preflight)

(3) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(4) G-518 Payload Accommodations Requirements, NASA Goddard Space

Flight Center, March 20, 1984.

(5) Press Release for G-518, Utah State University, Logan, Utah,

1984.
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Contact(s):

Rex Megill

ARME Enterprises
96 South 100 West

Hyrum, UT 84319

Bartell C. Jensen

Vice President

Research Center for Atmospheric and Space Sciences

Utah State University

Logan, UT 84322
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Principal Investigator(s): converse, v. W. (1)

Co-Investigator(s): Trumbauer, M. J. (Teacher/Sponsor) (2),

Head, R. R. (NASA Science Advisor) (3)

Affiliation(s): (1) During Skylab: Harlem High School, Rockford,

Illinois, Currently: United States Navy, Patrol Squadron Six,

Barbers Point, Hawaii; (2) Harlem High School, Rockford,

Illinois; (3) During Skylab: National Aeronautics and Space Ad -_

ministration (NASA), Marshall Space Flight Center (MSFC),

Huntsville, Alabama, Currently: Unknown

Experiment Origin: USA

Mission: Skylab SL-3, Second Skylab Manned Mission

Launch Date/Expt. Date: August 1973 (month experiment was

completed)

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Skylab Student Project, High School Student Experi-

ment, Skylab Manned Environment

Processing Facility: (i) Free cantilevered beam (spring loaded at

the free end with different masses), (2) strain gauge to convert

beam deflection into an electrical signal, (3) frequency counter,

and (4) mass holder

Builder of Processing Facility: NASA Marshall Space Flight Cen-

ter, Huntsville, Alabama

Experiment:

Zero Gravity Mass Measurement (ED-74)

While the weight of an object cannot be directly measured in a

near-weightless environment, the mass of an object can be

measured under such conditions. During this Skylab-3 experiment,

the ability to measure small masses in space was demonstrated.

The experimental apparatus consisted of an aluminum, can-

tilevered, flexible, spring beam (0.55 inch thick + or - 0.002

inch). The beam, which had a small cross section compared to its

length, was fixed at one end to a frequency counter. The other

end was free to oscillate.

During the experiment, one of five "test masses" was attached to
the free end of the beam. The beam was then deflected from its

resting position. The subsequent oscillation of the beam was

sensed at the fixed end via strain gauges. These gauges, in turn,

provided a signal to the frequency counter which had a visible

readout of the vibration period (+ or - 0.00_ second). A 16 mm

camera documented the beam deflection, beam oscillation, and

vibration period for all of the masses.
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The value of each mass could be calculated from the period of os-

cillation. This period, T, is related to the unknown mass by the

following equation:

T = 2*(pi) SQRT(M/K)

where M is the mass of the spring beam plus the unknown mass and

K is the beam spring constant.

Prior to the flight, the apparatus was calibrated with known

masses and a period vs. mass curve was constructed for flight ex-

periment comparison. The flight data resulted in a similar curve

which, when compared to the Earth-generated curve, plotted within

the tolerances of the cantilever beam. It was reported that

"There was a 3 to 4 percent difference between the ground-based

data and the flight measured data but... [the difference] could

have been attributed to an inexact knowledge of the beam's physi-

cal properties." (4, p. 78)

Key Words: Technological Experiments, Mass Measurement, Can-

tilevered Spring Beam, Mass-Spring Oscillation, Oscillation

Frequency

Number of Samples: five applied masses

Sample Materials: The cantilevered spring beam was fabricated

from an aluminum alloy.

Container Materials: not applicable

Experiment/Material Applications:

Skylab had two mass measurement devices onboard (for actual

astronaut use) which used a spring-mass mechanical oscillator

setup. However, "These two devices [did] not provide a clear

demonstration of this mass measurement principle." (3, p. 6-54)

This student experiment graphically demonstrated the principle

for educational purposes.

This type of measurement device was only suited for the measure-

ment of fixed mass quantities. It was unsuited for the measure-

ment of a specific quantity required in a scientific experiment

(e.g., i0 gm of sulfur). A variable quantity measurement could

only be realized using an apparatus that simulated gravity, as

would a centrifugal device. Such a (chemical balance) design was
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detailed within the Principal Investigator's initial experiment

proposal for Skylab.

Prior to the Skylab flight it was determined that such a chemical

balance design was too difficult to implement prior to the mis-

sion. The design, which was later expanded in 1975, is detailed

in Reference (5). The Principal Investigator surmised that such

a device would make a useful addition to the space station

measurement instruments.

References/Applicable Publications:

(i) "Mass Measurement (ED74)." In NASA MSFC Skylab Mission

Report-Saturn Workshop, NASA TM X-64814, October 1974, p. 12-83.

(post-flight)

(2) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by

NASA. In Workshop Proceedings of the Measurement and Charac-

terization of the Acceleration Environment on Board the Space

Station, August 11-14, 1986, Guntersville, Alabama, p. 9-1.

(acceleration measurements on Skylab)

(3) "Experiment ED74 - Mass Measurement." In MSFC Skylab Corol-

lary Experiment Systems Mission Evaluation, NASA TM X-64820, Sep-

tember 1974, pp. 6-54 - 6-58. (post-flight)

(4) Skylab, Classroom in Space. Edited by Summerlin, L. B., NASA

SP-401, 1977, pp. 77-80. (post-flight)

(5) Converse, V. W.: Final Report on Ed-74 Zero Gravity Mass

Measurement. January i0, 1974. (post-flight)

(6) Mass Measurement (ED74). In MSFC Skylab Mission Report-

Saturn Workshop, NASA TM X-64814, October 1974, pp. 12-83 - 12-
84.

(7) Input received from Principal Investigator V. W. Converse,

August 1988.

Contact(s):

Lt. Commander Vincent W. Converse

USN

Patrol Squadron Six

Barbers Point, Hawaii,

FPO San Francisco, CA 96601-5903
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Principal Investigator(s): Lierke, E. G. (1)

Co-Investigator(s): Unknown

Affiliation(s): (1) Battelle-Institute, Frankfurt, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 1

Laun=h Date/Expt. Date: December 1977

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 02-1 (resonant

tube levitator with isothermal resistance-heated tube furnace)

Builder of Processing Facility: Levitator: Battelle-Institute,

Frankfurt, Germany; Furnace: Unclear, possibly MBB/ERNO, Bremen,

Germany

Experiment:

Acoustic Positioninq

This TEXUS 1 experiment was the first in a series of investiga-

tions designed by Lierke to study the operation of an acoustic

positioning device. The specific objective of the experiment was

to determine if the device could suspend, melt, and solidify a

molten metallic sample under low-gravity conditions. The device

permitted (i) the containerless processing of a spherical

material and (2) the study of the fluid physics of the sphere.

During the TEXUS 1 sounding rocket mission, a resonant tube

leviator was contained in an isothermal, resistance-heated tube

furnace (TEXUS Experiment Module TEM 02-1). The furnace was

capable of moderate heat-up and cooling rates (less than or equal

to 2 K/s). "The standing-wave resonance was temperature-

compensated by an automatic gas injection system which readjusted

the temperature-dependent wavelength change during heat-up and

cooling by a concentration change of a two-component inert gas

mixture (Krypton/Helium) with extremely different sound speed of

the two components." (2, p. 1129)

A spherical sample (8 mm in diameter) of hypereutectic Ag-60 wt.%

Sb was prepositioned within a wire cage. (The melt temperature

of this alloy is 485 °C.) A cine camera was used during the

rocket flight for sample observation.

It was reported that "Although the electronic monitor outputs in-

dicated no malfunction during the flight, the cine recording

showed that no stable positioning was achieved and that the

sample touched the cage. Either the wave pattern was not stable

or the gas which acted as an acoustic wave carrier was blown out

of the furnace in the low pressure environment of the flight."

(4, p. 360)
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Very little additional information (related to the actual in-

flight positioner/furnace operation) could be located at this

time. References (i) and (2) discuss the theoretical background
of this work.

<Note: E. G. Lierke was the Principal Investigator for the opera-

tion of the acoustic positioner; H. Ahlborn was the Principal In-

vestigator for the Ag-Sb sample analysis. For details concerning

the Ag-Sb sample analysis, see Ahlborn, TEXUS 1 (Chapter 6).>

Key Words: Technological Experiments, Melt and Solidification,

Hypereutectics, Metals, Acoustic Positioning, Acoustic Levita-

tion, Gas Injection, Resonant Frequency, Containerless Process-

ing, Binary Systems, Spheres, Processing Difficulties

Number of Samples: one

Sample Materials: Ag-60 wt.% Sb;

krypton/hel ium

(Ag*Sb*, Kr*He* )

Container Materials: not applicable

inert gas mixture:

Experiment/Material Applications:

See Herlach, TEXUS 9 (Chapter 6).

References�Applicable Publications:

(i) Lierke, E. G., Grossbach, R., Flogel, K., and Clancy, P.:

Acoustic Positioning for Space Processing of Materials Science

Samples in Mirror Furnaces. Symposium in Industrial Activity in

Space, Stressa, Italy, May 2-4, 1984, Proceedings, Paris,

Eurospace, 1984, pp. 116-126. (post-flight)

(2) Lierke, E. G., Grossbach, R., Flogel, K., and Clancy, P.:

Acoustic Positioning for Space Processing of Materials Science

Samples in Mirror Furnaces. In Proceedings of 1983 Ultrasonics

Symposium, October 31 - November 3, 1983, pp. _129-i139. (post-

flight; mentions TEXUS 9 proposal and includes theoretical

discussion)
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(3) Clancy, P. F., Lierke, E. G., Grossbach, R., and Heide, W.
M.: Electrostatic and Acoustic Instrumentation for Material

Science Processing in Space. Acta Astronautica, Vol. 7, 1980,

pp. 877-891. (post-flight; discusses apparatus; no results)

(4) Acoustic Positioning of a Molten Alloy Sample. In Summary

Review of Sounding Rocket Experiments in Fluid Science and

Materials Sciences, TEXUS 1 to 20, MASER 1 and 2, ESA SP-I132,

February 1991, pp. 360-361. (post-flight)

Contact(s):

Dr. E. G. Lierke

Battelle-Institut e. V.

Am Romerhof

Postfach 90 01 60

D-6000 Frankfurt/Main 90

Germany
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Principal Investigator(s): Lierke, E. G. (1)

Co-Investigator(s): Unknown

Affiliation(s): (1) Battelle-Institute, Frankfurt, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 9

Launch Date/Expt. Date: May 1984

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 02-2: monoel-

lipsoidal mirror furnace (ELLI) combined with a resonant tube
acoustic levitator.

Builder of Processing Facility: Levitator: Battelle-Institute,

Frankfurt, Germany; Furnace: MBB/ERNO, Bremen, Germany

Experiment:

Acoustic Positioning

"Containerless processing under high purity conditions favours

the extension of the undercooling range of metallic melts and can

result in metastable crystalline or amorphous (glassy) phases

with unique physical properties. Microgravity conditions

facilitate the containerless processing of samples and prevent

the sedimentation of denser components." (4, p. 362) <Note: See

Herlach, TEXUS 9 (Chapter 6) for a more detailed discussion of

the containerless processing goals.>

This TEXUS 9 experiment was the second in a series of investiga-

tions designed by Lierke to study the operation of an acoustic

positioning device (see Lierke, TEXUS i).

In preparation for the rocket flight, a resonant tube acoustic

levitator was configured with the mirror furnace ELLI and placed

in the TEXUS Experiment Module TEM 02-2). The levitator had been

partially tested during parabolic aircraft flights (low-gravity

periods of about i0 seconds) and was to be further tested during

the TEXUS 9 sounding rocket mission (low-gravity period of 6

minutes). A Pd 77.5 - Cu 6 - Si 16.5 sample (8 mm in diameter,

2.84 gm) was prepositioned in a wire cage in the focus of the

mirror furnace. <Note: It is not clear if the sample composi-

tion was in weight, volume, or atomic percentage.>

Reportedly, during the TEXUS 9 mission, "the experiment was per-
formed in othe temperature range 760 C ([the sample] melting

o o
point) to i000 C with heating rates of i0 to 20 C/s. The

sample was monitored with a CCD camera for automatic and telecom-

mand control." (4, p. 362) <Note: The following is not clear: (i)

if the sample was preheated prior to launch or (2) at what stage

of the experiment the above temperature range was realized.>
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Reportedly, "The positioning test was only marginally successful.
The sample was effectively free floating while completely melted.
However, it started to rotate and oscillate during the cooling
phase and came into contact with the wire cage several times.
Finally, it remained attached to the cage while still molten and
solidified." (4, p. 362)

<Note: No other discussion concerning the experimental procedure
or performance of the acoustic positioning device could be lo-
cated at this time.>

<Note: E. G. Lierke was the Principal Investigator of the acous-
tic positioner/furnace operation. D. M. Herlach was the Prin-
cipal Investigator of the sample analysis. For details concern-
ing the sample analysis, see Herlach, TEXUS 9 (Chapter 6).>

Key Words: Technological Experiments, Melt and Solidification,
Acoustic Positioning, Acoustic Levitation, Resonant Frequency,
Containerless Processing, Ternary Systems, Alloys, Metals, Amor-

phous Materials, Sample Purity, Glasses, Glass Formation,

Spheres, Drops, Drop Oscillation, Drop Rotation, Fluid Oscilla-

tion, Sample Rotation, Liquid Dynamic Response, Sedimentation,

Undercooling, Processing Difficulties

Number of Samples: one

Sample Materials: 77.5% Pd-16.5% Si-6% Cu

(Pd*Si*Cu*)
Container Materials: not applicable

Experiment/Material Applications:

See Herlach, TEXUS 9 (Chapter 6).

References/Appllcable Publications:

(i) Lierke, E. G., Grossbach, R., Fl6gel, K., and Clancy, P.:

Acousitc Positioning for Space Processing of Materials Science

Samples in Mirror Furnaces. In Symposium in Industrial Activity

in Space, Stressa, Italy, May 2-4, 1984, Proceedings, Paris,

Eurospace, 1984, pp. 116-126. (preflight)
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(2) Lierke, E. G., Grossbach, R., Flogel, K., and Clancy, P.:
Acoustic Positioning for Space Processing of Materials Science
Samples in Mirror Furnaces. In Proceedings of 1983 Ultrasonics
Symposium, October 31 - November 1-3, 1983, pp. 1129-1139.
(preflight; mentions TEXUS 9 proposal; includes theoretical
discussion)

(3) Clancy, P. F., Lierke, E. G., Grossbach, R., and Heide, W.
M.: Electrostatic and Acoustic Instrumentation for Material

Science Processing in Space. Acta Astronautica, Vol. 7, 1980,

pp. 877-891. (preflight; discusses apparatus; no results)

(4) Acoustic Positioning. In Summary Review of Sounding Rocket

Experiments in Fluid Science and Materials Sciences, TEXUS 1 to

20, MASER 1 and 2, ESA SP-I132, February 1991, pp. 362-365.

(post-flight)

Contact(s):

Dr. E. G. Lierke

Battelle-Institut e. V.

Am Romerhof

Postfach 90 Ol 60

D-6000 Frankfurt/Main 90

Germany
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Principal Investigator(s): Lierke, E. G. (i)

Co-Investigator(s): Unknown

Affiliation(s): (1) Battelle-Institute, Frankfurt, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 14a

Launch Date/Expt. Date: May 1986

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 02: monoellip-

soidal mirror furnace (ELLI) combined with an acoustic position-

ing device. (TEM 02 was previously flown on TEXUS 9, but was now

modified to improve the radial positioning force approximately

50% over TEXUS 9)

Builder of Processing Facility: Furnace: MBB/ERNO, Bremen, Ger-

many <Note: It is not clear if the original builder of the

levitator (Battelle-Institute, Frankfurt, Germany) also provided

the newly modified acoustic positioner for this flight.>

Experiment:

Acoustic Positioninq

This TEXUS 14a experiment was the third in a series of investiga-

tions designed by Lierke to study the low-gravity operation of an

acoustic positioning device (see Lierke, TEXUS i, TEXUS 9).

Details of the TEXUS 14a experimental setup and expected inflight

experimental timeline were not discussed in the available publi-

cations. It appears that during the low-gravity experiment, a

PdCuSi sample was to be positioned and heated using the TEXUS Ex-

periment Module TEM 02-2. TEM 02-2 contained a monoellipsoidal

mirror furnace with an acoustic positioning device.

Reportedly, because of an unexpected "wobbling motion ''_ of the

TEXUS rocket, uncontrollable accelerations were produced on the
vehicle and the desired low-gravity level of 10 -7 g was not at-

tained. The experiment was reflown on TEXUS 14b (see Lierke,

TEXUS 14b (this chapter)).

Documentation further detailing the results of this TEXUS 14a ex-

periment does not appear to be available.

<Note: E. G. Lierke was the Principal Investigator of the acous-

tic positioner/furnace operation. D. M. Herlach was the Prin-

cipal Investigator of the sample analysis (see Herlach, TEXUS 14a

(Chapter 6)).>
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Key Words: Technological Experiments, Melt and Solidification,
Acoustic Positioning, Acoustic Levitation, Containerless Process-
ing, Ternary Systems, Spheres, Acceleration Effects, Rocket Mo-
tion

Number of Samples: unknown, possibly one

Sample Materials: unknown, possibly PdCuSi alloy

(Pd*Cu*Si*)

Container Materials: not applicable

Experiment/Material Applications:

See Lierke, TEXUS 9, Experiment section.

References/Applicable Publications:

(i) Experimentelle Nutzlast und Experimente TEXUS 14.

BMFT/DFVLR TEXUS 13-16 Abschlussbericht 1988, pp. 53-55.

German; post-flight)

In

(in

(2) Lierke, E. G. and Grossbach, R.: Akusticshe Positionierung.

In BMFT/DFVLR TEXUS 13-16 Abschlussbericht 1988, pp. 90-93. (in

German; post-flight)

(3) Experimentmodul TEM 02-2. In BMFT/DFVLR TEXUS 13-16

Abschlussbericht 1988, p. 89. (in German; experiment module)

Contact(s):

Dr. E. G. Lierke

Battelle-Institut e. V.

Am Romerhof

Postfach 90 01 60

D-6000 Frankfurt/Main 90

Germany
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Principal Investlgator(s): Lierke, E. G. (1)

Co-Investlgator(s}: Unknown

Affiliation(s}: (1) Battelle-Institute, Frankfurt, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 14b

Launch Date/Expt. Date: May 1987

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 02-2: monoel-

lipsoidal mirror furnace (ELLI) combined with an acoustic

positioning device. (TEM 02 was previously flown on TEXUS 9, but

was now modified to improve the acoustic radial positioning force

by approximately 50% over TEXUS 9.)

Builder of Processing Facility: Furnace: MBB/ERNO, Bremen, Ger-

many <Note: It is not clear if the original builder of the

levitator (Battelle-Institute, Frankfurt, Germany) also provided

the modified acoustic positioner.>

Experiment:

Acoustic Positioninq

This TEXUS 14b experiment was the fourth in a series of inves-

tigations designed by Lierke to study the operation of an acous-

tic positioning device (see Lierke, TEXUS i, TEXUS 9, TEXUS 14a).

The device permitted the containerless processing of a spherical

material. The specific objectives of the study were to (i) in-

vestigate the effect of large thermal gradients on an acoustic

positioning system and (2) achieve the highest possible under-

cooling of a containerless sample.

The TEXUS Experiment Module TEM 02-2 was used for the experiment.

The module contained a monoellipsoid reflecting furnace heated by

a halogen lamp. A uniaxial acoustic positioning device equipped

with the furnace was used to position a spherical PdCuSi sample.

The sample position and lamp power could be adjusted by remote

control during the mission.

Because of results from the earlier TEXUS 9 experiment (see

Lierke, TEXUS 9) several improvements were made to the experimen-

tal apparatus. These improvements included:

(i) Increasing (by 50%) the radial positioning force of the

acoustic positioner by (a) increasing the ul£rasonic wave power

and (b) optimizing the furnace tube diameter.

(2) Adding a second CCD camera to help assess the sample position

and keep the sample within the furnace mirror focus.
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(3) Using a newly developed damping mechanism which controlled

the positioning force amplitude as a function of sample location.

(4) Isolating the inner part of the positioner from the mirror

furnace volume by using (a) a bellows and (b) a high-purity

protecting gas.

During the mission, a spherical Pd-Cu-Si alloy sample was

suspended in the pressure junction point of a stationary

ultrasound wave. The ultrasound wave was generated in a quartz

tube connected to a sound transmitter.) The sample was observed

with the two CCD cameras positioned at right angles to each

other. (Reportedly, this camera configuration allowed exact

monitoring of sample position.) Once positioned, the sample was

melted and solidified. The furnace temperature was varied be-

tween room temperature and 900 °C at heating rates of 6 to 20 K/s

and cooling rates of 4 to 8 K/s.

The furnace atmosphere was continually charged and purged with an

inert gas to reduce the 02 partial pressure as much as possible.
This was required to retain sample purity. However, "Because of

the piezo ceramic rings, contained in the built-in ultrasound

converter, it was not possible to fully heat the interior part of

the process chamber so that one must question the extremely low

partial pressure [of 02] (which was not measured). Besides, the

flight sample.., was not delivered melted in a quartz ampoule

with a highly pure surface. Instead it had a visible impurity

already during installation in the positioning unit which could

not be removed [prior to flight] and which probably triggered

germ formation in the undercooling experiment." (2, p. 91,

translation)

It was reported that all components of the module operated per-

fectly during the experiment. While heating, the sample ex-

perienced radial oscillations which led to contact with the

sample holder. However, as the temperature increased the oscil-

lations disappeared and the specimen was calm while molten. The

radial oscillations returned when the sample was cooled and the

sample once again contacted the specimen holder.

<Note: E.G. Lierke was the Principal Investigator of the acoustic

positioner/furnace operation. D. M. Herlach was the Principal

Investigator of the sample analysis. For details concerning the

sample analysis, see Herlach, TEXUS 14b (Chapter 6).>
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Key Words: Technological Experiments, Melt and Solidification,

Acoustic Positioning, Acoustic Levitation, Containerless Process-

ing, Sample Purity, Undercooling, Ternary Systems, Eutectics, Al-

loys, Glasses, Drops, Drop Oscillation, Fluid Oscillation, Liquid

Dynamic Response, Spheres, Thermal Gradient, Contamination

Source, Impurities, Halogen Lamps

Number of sample: one

Sample Materials: spherical PdCuSi alloy

(Pd*Cu*Si*)

Container Materials: not applicable

Experiment/Material Applications:

See Herlach, TEXUS 14b (Chapter 6).

References/Applicable Publications:

(i) Lierke, E. G., Grossbach, R., Fl6gel, K., and Clancy, P.:

Acoustic Positioning for Space Processing of Materials Science

Samples in Mirror Furnaces. Symposium in Industrial Activity in

Space, Stressa, Italy, May 2-4, 1984, Proceedings, Paris,

Eurospace, 1984, pp. 116-126. (preflight; TEXUS 1 results)

(2) Lierke, E. G. and Grossbach, R.: Akustische Positionierung.

In BMFT/DFVLR TEXUS 13-16 Abschlussbericht 1988, pp. 90-93. (in

German; post-flight)

(3) Experimentmodul TEM 02-2 . In BMFT TEXUS 13-16

Abschlussbericht 1988, pp. 90-93. (in German; post-flight)

(4) Lierke, E. G., Grossbach, R., Fl6gel, and Clancy, P.: Acous-

tic Positioning for Space Processing of Materials Science Samples

in Mirror Furnace. In Proceedings of the 1983 Ultrasonic Sym-

posium, October 31 - November 3, 1983, pp. 1129-1139.

(preflight; theoretical discussion; TEXUS 1 results; TEXUS 9

proposa i )

(5) Clancy, P. F., Lierke, E. G., Grossbach, R., and Heide, W.

M.: Electrostatic and Acoustic Instrumentation for Material

Science Processing in Space. Acta Astronautica, Vol. 7, 1980,

pp. 877-891. (preflight; discusses experiment apparatus)
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(6) Acoustic Positioning. In Summary Review of Sounding Rocket
Experiments in Fluid Science and Materials Sciences, TEXUS 1 to
20, MASER 1 and 2, ESA SP-I132, February 1991, pp. 366-369.

(post-flight)

Contact(s):

Dr. E. G. Lierke

Battelle-Institut e. V.

Am Romerhof

Postfach 90 01 60

D-6000 Frankfurt/Main 90

Germany
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Principal Investigator(s): Sprenger, H. (i), Schweitzer, K. (2)

Co-Investigator(s): Unknown

Affiliation(s): (i) During TEXUS i: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Motoren und Turbinen Union

(MTU), Munich, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 1

Launch Date/Expt Date: December 1977

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01: Isothermal

Four Chamber Furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Skin Technoloqy

This TEXUS 1 experiment was the first of a series of investiga-

tions designed by Sprenger et al. to examine the feasibility of

casting materials under low-gravity conditions using skin tech-

nology.

Low-gravity casting of materials using skin technology involves

three major steps:

(I) On Earth, a part is cast or machined into its desired shape

and a thin coating (skin) of an inert material (e.g., a ceramic)

is applied.

(2) In the low-gravity environment, the part is melted and

resolidified (e.g., directionally). In this environment an im-

proved microstructure results because (a) sedimentation, convec-

tion and buoyancy effects are reduced and (b) the part can retain

its complex casted shape.

(3) After low-gravity processing, the part is returned to Earth

where the skin is either removed or left intact. (The skin is

left intact if it can act as a protective layer.)

Before beginning low-gravity experiments in skin technology, cer-

tain questions and uncertainties had to be addressed:

(I) Prior to the experiment, it was generally accepted that

single crystals, multivariant eutectics, and dispersion rein-

forced alloys would benefit from solidification under low-gravity

conditions, although the degree of alloy refinement by space

18-77



processing had not been determined. Since these types of

materials are candidates for turbine blade applications, they

were considered important for study.

(2) Since Ni and Co based alloys (turbine blade materials) con-

tain aggressive elements (Ti, AI, etc.), it was necessary to

select a skin material which would remain stable during process-

ing. Alumina was selected as the initial coating material, be-

cause (a) it has been employed extensively in industry and (b) it

may be applied to the alloy by many different processes.

(3) The selection of alumina introduced additional uncertainties

into the process. For instance, because of differences in ther-

mal expansion between the alumina and sample material, stress

might be created within the thin skin. Further, during melting,

metallic alloys would exhibit positive volume increments which

would introduce additional stress in the skin. The wetting

characteristics of the melt with respect to the alumina would

also introduce unknowns into the process.

Preliminary ground-based experiments employing simply shaped IN-

100 sample materials (a Ni based turbine blade cast alloy, with

plasma sprayed and detonation gun coating of alumina) were con-

ducted in order to address some of the above mentioned uncer-

tainties. It was found that:

(i) Although the skin retained its shape under the forces of

gravity, the sample did not. However, the edges of the sample

tended to add a stiffening effect.

(2) Skin destruction caused by (a) differences in thermal expan-

sion properties between skin and sample materials and (b) volume

expansion during melting were not observed.

(3) Thin skins (50 microns) tended to perform better than thick

skins (200 microns) which tended to spall (flake off).

(4) The melt had excellent wetting behavior with the alumina

skin.

The purpose of the TEXUS 1 experiment was to determine the dif-

ferences between the l-g processed samples and the low-gravity

samples. For example, would be the deformations shown in the l-g

samples also be present in the low-g samples?

In preparation for the experiment, two samples (4 mm by 7 mm by

30 mm long) of IN-100 were each plasma spray coated with a 75

micron thick layer of alumina. In order to increase the wet-

tability of the molten material to the skin, a 50 micron thick

layer of NiAI was applied between the sample and alumina. The
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samples were inserted in a Mo alloy (TZM) cartridge and placed

within the gradient portion of the TEXUS Experiment Module TEM 01

isothermal furnace.

Previous testing of the furnace indicated that up to 2/3 of the

samples could become molten using the maximum furnace temperature

of 1600 °C. During the experiment, the samples were cooled with

He gas directed along the outside of the Mo cartridge. Ther-

mocouples could not be placed in the samples, so the actual ther-

mal profiles were determined from calibration measurements.

Post-flight examination of the materials revealed that only one

of the samples was melted. This anomaly was attributed to a

,,...non-symmetrical temperature distribution of the applied heat-

ing chamber." (2, p. 105)

The molten sample exhibited some deformation: an outward deforma-

tion of the middle section and an inward deformation of the sec-

tion solidified last. It was reported that this deformation was

due to a volume increase during melting which resulted in a

pillow-shaped blowup of the sample. "At the beginning of

resolidification this deformation of the skin remains fixed and

can not be reversed within the solidified portion. Only after

some time of solidification the decreasing volume of the sample

leads to a compensating inward deformation." (2, p. 105)

It was reported that SEM microanalysis did not show evidence of

segregation. Metallographic examination indicated that the un-

melted portion had a recrystallized structure and the molten sec-

tion had a cast structure.

Key Words: Technological Experiments, Melt and Solidification,

Alloys, Directional Solidification, Skin Technology, Skin Cast-

ing, Coated Surfaces, Thin Films, Plasma Spray Coating, Wetting,

Sample Deformation, Volume Expansion, Solid/Liquid Interface,

Sample Microstructure, Turbine Blade Applications, Stress, Ther-

mal Gradient, Thermal Expansion, Sedimentation, Quench Process,

Buoyancy Effects Diminished, Convection, Asymmetric Temperature

Field, Sample Not Processed as Planned

Number of Samples: two

Sample Materials: nickel-based alloy IN i00

(Ni*)
Container Materials: Skin material: plasma-sprayed coating of

alumina (75 microns thick) with NiAI interlayer (50 microns

thick); cartridge material: molybdenum alloy TZM

(Ni*AI*, Mo*)
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Experiment/Material Applications:

The primary research application of skin technology is the

production of turbine blades. Such production has a

cost/benefits ratio which would be acceptable when confronted

with the expense of low-gravity processing. Space-processed tur-

bine blades could have in an increased temperature capability be-

cause of higher uniformity and lack of defects in the space

processed structure. This microstructure improvement would be

attributable to the lack of sedimentation and convection present

during low-gravity processing. It was reported that these

microstructure improvements would result in (i) doubling the

blade's life expectancy, (2) reducing engine fuel consumption by

4%, and (3) increasing thrust by 10% (and thus increasing in

payload potential by 20%).

(Other possible applications of skin technology can be located in

Reference (5)).

IN-100 (a Ni-based superalloy) is a material which is used for

turbine blade applications.

References/Applicable Publications:

(I) Sprenger, H. and Schweitzer, K.: Skin Casting Experiments in

Rocket Flights. In Proceedings of the 5th ESA-PAC Symposium on

European Rocket and Balloon Programmes & Related Research, Bour-

nemouth (UK), April 14-18, 1980, ESA SP-152, June 1980, pp. 349-
356.

(2) Sprenger, H., Erben, E., and Zeilinger, H.: Skin Technology.

In ESA 3rd European Symposium on Material Science in Space,

Grenoble, April 24-27, 1979, ESA SP-142, June 1979, pp. 101-108.

(3) Sprenger, H. and Erben, E.:

Application of Space Processing.

625-635. (Pre-TEXUS I)

Skin Technology-An Industrial

Acta Astronautica, Vol. 5, pp.

(4) Sprenger, H. and Schweitzer, K.,: Application of Skin Tech-

nology. Shuttle/Spacelab Utilization, Final Report, Project

TEXUS II, pp. 10-26, 1978. (includes comparison to TEXUS I;

post-flight)

(5) Sprenger, H. and Schweitzer, K.: TEXUS Experiments on Skin

Technology. International Astronautical Federation, 32nd

Congress, Rome, Italy, September 6-12, 1981, IAF-81-148,

Preprint, 12 pp.
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(6) Schweitzer, K. K., Wortmann, J., Rossmann, A., Betz, W.,
Sprenger, H., Erben, E., and Zeilinger, H.: Space Processing of
Turbine Blades by Means of Skin Technology. In the In-
dustrialization of Space, Proceedings of the Twenty-Third Annual
Meeting, San Francisco, California, October 18-20, 1977, Part i,
American Astronautical society, 1978, pp. 257-275. (post-flight)

(7) Sprenger, H. and Schweitzer, K. : Application of Skin
Technology: TEXUS 2 Experiment. Bundesministerium fuer Forschung
und Technologie, Report Number: BMFT-FB-W-81-028, December 1979,
63 pp. (in German; English summary; appears to include TEXUS 1
findings)

(8) Vortmann, J., Schweitzer, K., Sprenger, H., and Erben, E.:
Application of Skin Technology to Turbine Blades. AIAA 16th
Aerospace Sciences Meeting, Huntsville, Alabama, January 16-18,
1978. (preflight)

(9) Sprenger, H., Erben, E., Zeilinger, H., Wortmann, J., and
Schweitzer, K.: Skin Technology-A Shape Conserving Remelting
Process in Space. In Space Shuttle and Spacelab Utilization: Near
Term and Long Term Benefits for Mankind, Proceedings of the 24th
Annual Meeting and 16th Goddard Memorial Symposium, Washington,
D. C., March 8-10, 1978, Part 2, American Astronautical Society,
pp. 513-526.

(i0) Sprenger, H. J.: Directional Solidification of Metals and
Alloys by Means of the Skin Technology. Appl. Microgravity Tech.
1 1987, pp. 30-36. (post-flight)

(ii) Skin Technology. In Summary Review of Sounding Rocket Ex-
periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,
MASER 1 and 2, ESA SP-I132, February 1991, pp. 338-339. (post-
flight)

Contact(s):
Dr. H. J. Sprenger
Intospace GmbH
Prinzenstrasse 17
3000 Hannover 1
Germany

K. Schweitzer
(Address Unverified, Possibly:)

Motoren und Turbinen Union (MTU)

Dachauerstrasse 665

D-8000 M_nchen 50

Germany
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Principal Investigator(s): Sprenger, H. (i), Schweitzer, K. (2)

Co-Investigator(s): None

Affiliation(s): (i) During TEXUS 2: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Motoren und Turbinen Union

(MTU), Munich, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 2

Launch Date/Expt Date: November 1978

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-i: Isothermal

Four Chamber Furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Skin Technology

This TEXUS 2 experiment was the second in a series of investiga-

tions designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS I).

The specific objectives of the experiment were to (i) avoid

sample deformation by volume expansion (such deformation had oc-

curred in the TEXUS 1 skin technology sample), (2) demonstrate

the ability to transform a sample prepared by powder-

metallurgical techniques into a uniform cast structure under low-

gravity conditions, and (3) improve (over the TEXUS 1 experiment)

the temperature measurement of the samples.

Two different materials were selected for this experiment: (i)

IN-100 cast Ni superalloy (the same alloy type as flown on TEXUS

I) and (2) a powder-metallurgically prepared IN-738 alloy with a

Y203 particle dispersion. The samples (4 mm by 7 mm by 30 mm)

were coated with a 50 micron thick skin of plasma-sprayed

alumina. In order to compensate for volume expansion of the melt

(approximately 3%), small holes were drilled through the skin

into the specimen. It was hoped that these holes would prevent

sample distortion. Each sample was fixed within a vacuum sealed

Mo alloy (TMZ) cartridge by screw threads located at the top of

the cartridge. The cartridges were contained in the gradient

portion of the TEM 01-i Experiment Module.

Three thermocouples provided temperature measurement. One ther-

mocouple was located within an alumina spacer between the sample

cartridges and the two other thermocouples were located in the
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lower "cap" of each cartridge. The samples were to be melted and

directionally solidified while under low-gravity conditions.

Post-flight analysis of the thermal data indicated that "The in-

tended time-temperature profile of the TEXUS II experiment...was

unfortunately not achieved due to a failure of two heating ele-

ments in the furnace which occurred at about 170 seconds after

launch." (4, p. 15) Therefore, the samples did not achieve the

desired temperature. However, more than 50% of each sample was

melted. In addition, "...the [IN-100 alloy] sample had become

unscrewed from the cartridge before or during launch of the TEXUS

rocket so that it was free during the flight." (4, p. 16) No

such problem was reported for the IN-738 sample.

Metallurgical examination of the IN-100 material revealed the

presence of a Ni-Mo eutectic at one end of the sample. This

presence indicated contact between the melt and the Mo alloy

cartridge. "The heavy deformation of the edges in the upper sec-

tion of the specimen could have been caused by the formation

of... Ni-Mo eutectic alloy by sucking off the liquid alloy

through the bore. The deformation was more severe than [that

observed] in l-g experiments.., and may.., have been intensified

by [the] inner surface tension of the hole which was obviously

closed by a metallic film. The possibility that the perhaps non-

solidified specimen collided with the cartridge walls during

gravitational re-entry of the rocket seems unlikely." (4, p. 17)
Below this eutectic section, the sample contained a dendritic

structure of a few mm in length. Following this section was a

mushy zone which indicated this portion of the sample had existed

between the liquid and solid states.

Similar results were found with the IN-738 sample. The

microstructure present in over half of the sample indicated only

partial melting. In addition, residual gas cavities, present be-

cause of the powder-metallurgic preparation, existed within the

sample. These gas inclusions expanded during melting and led to

a severe deformation of the sample. Metallographic studies also

indicated that the Y203 particles had agglomerated at the grain

boundaries. This agglomeration may be attributed to (i) the

solidification interface pushing the particles through the melt

and/or (2) the induced motion of the melt by the gas inclusions

(although this factor cannot be confirmed).

Although the heaters failed, some positive observations could be

made. Despite the deformation of the IN-100 sample, the volume

expansion holes proved effective in avoiding the problems as-

sociated with volume expansion of the melt. (The l-g experiments

also confirmed this finding.) It was reported that the good wet-

tability of the skin by the melt prevented discharge of the melt

through the hole in the skin. It also appeared that good wet-
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tability is an important factor in skin technology becasue it

prevents detachment of the melt and skin.

Key Words: Technological Experiments, Melt and Solidification,
Directional Solidification, Mushy Zone, Skin Technology, Skin

Casting, Coated Surfaces, Thin Films, Plasma Spray Coating, Dis-

persion Alloys, Powder Metallurgy, Particle Dispersion, Particle

Agglomeration, Particle Motion, Sample Microstructure, Wetting,

Wetting of Container, Surface Tension, Capillary Flow, Sample
Deformation, Volume Expansion, Cavity, Solid/Liquid Interface,

Turbine Blade Applications, Thermal Gradient, Thermal Expansion,

Eutectics, Dendritic Structure, Grain Boundaries, Inclusions,

Crucible Effects, Sample Detachment from Crucible, Vacuum, Fur-

nace Malfunction, Processing Difficulties, Rocket Motion, Vehicle

Re-Entry Forces/Vibration

NUmber of Samples: two
Sample Materials: Sample #I: nickel based alloy IN-100; sample

#2: nickel based alloy IN-738 containing approximately 0.1 micron

Y 0 dispersed particles
( il,Y*o*)
Container Materials: Skin material: plasma-sprayed alumina,

A1203; cartridge material: molybdenum alloy TMZ
(AI*O*, Mo*)

Experiment/Material Applications:

The specific reason why the IN 738 alloy (with a Y203 dispersion)
was selected was not detailed in available -publications

However, it is believed that the IN 738 alloy is used for turbine

blade applications. Dispersion strengthened alloys are also used
for turbine blades.

See also Sprenger, TEXUS i.

References/Applicable Publications:

(I) Sprenger, H. and Schweitzer, K.: Skin Casting Experiments in

Rocket Flights. In Proceedings of the 5th ESA-PAC Symposium on

European Rocket and Balloon Programmes & Related Research, Bour-

nemouth (UK), April 14-18, 1980, ESA SP-152, June 1980, pp. 349-
356.
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(2) Sprenger, H., Erben, E., and Zeilinger, H.: Skin Technology.

In ESA 3rd European Symposium on Material Science in Space,

Grenoble, April 24-27, 1979, ESA SP-142, June 1979, pp. 101-108.

(3) Sprenger, H. and Erben, E.:

Application of Space Processing.

625-635. (pre-TEXUS i)

Skin Technology-An Industrial

Acta Astronautica, Vol. 5, pp.

(4) Sprenger, H. and Schweitzer, K.: Applications of Skin Tech-

nology. Shuttle/Spacelab Utilization Final Report Project Texus

II 1978, pp. 11-26. (German publication)

(5) Sprenger, H. and Scweitzer, K.: TEXUS Experiments on Skin

Technology. International Astronautical Federation 32nd

Congress, Rome Italy, September 6-12, 1981, IAF-81-148, Preprint,

12 pp.

(6) Sprenger, H. and Schweitzer, K.: Application of Skin

Technology: TEXUS 2 Experiment. Bundesministerium fuer Forschung

und Technologie Report Number: BMFT-FB-W-81-028, December 1979,

63 pp. (in German; English summary)

(7) Input received from G. Otto, October 1989.

(8) Sprenger, H. J.: Directional Solidification of Metals and

Alloys. Appl. microgravity Tech. i, 1987, pp. 30-36. (post-

flight)

(9) Skin Technology. In Summary Review of Sounding Rocket Ex-

periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February 1991, pp. 340-341. (post-

flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany

K. Schweitzer

Current Address Unverified, Possibly:

Motoren und Turbinen Union (MTU)

Dachauerstrasse 665

D-8000 M_nchen 50

Germany
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Principal Investigator(s): Sprenger, H. (i), Schweitzer, K. (2)
Co-Investigator(s): Unknown

Affiliation(s) : (1) During TEXUS 3: Maschinenbabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Motoren und Turbinen Union

(MTU), Munich, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 3

Launch Date/Expt Date: April 1980

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-2

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Skin Technoloqy

This TEXUS 3 experiment was the third in a series of investiga-

tions designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS i, TEXUS 2).

During the previous two TEXUS experiments in this investigative

series the furnace temperature was not high enough to completely

melt the samples. Therefore, it was proposed that a low-melting,

aluminum-based alloy be employed for the TEXUS 3 experiment. An

AIMg 3 alloy was selected not only for its melt temperature, but
because a thin skin could be applied to its surface by either an

anodic or chemical oxidation process.

Prior to the mission, two samples were prepared. For the first

sample, a thin skin was applied to the AIMg 3 sample by a process
of electrolytic oxidation in ammonium tartrate. (The available

thickness of the skin, which was far less than 1 micron, created

difficulties during ground experiments.) For the second sample,

a (<i micron thick) skin (produced by natural oxidation) was al-

lowed to form on the AIMg 3. Other changes/improvements in the

experimental setup included (i) the omission of the Mo alloy

cartridges which, on previous low-gravity experiments, contained

the coated samples and (2) the placement of thermocouples within

the sample in axially drilled bores. The samples were processed

using the gradient portion of the TEM 01 experimental module.

Post-flight analysis of the processed materials revealed severe

deformation of the sample although the thin skin prevented any

spillage of the melt. It was concluded that the deformation was

caused by an unintended time-temperature profile which resulted
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in the introduction of the cooling gas into the furnace chamber

while the samples were still molten. "The temperature dif-

ferences in relation to the ground experiments... [was] obviously

due to the fact that the heat flow from furnace to sample was

reduced due to the low gas pressure in the furnace during the

rocket flight." (i, p. 8)

Reportedly, because of a rocket de-spin failure, the intended

low-gravity level of this mission was never achieved during the

TEXUS 3 flight. However, no publications could be located which

discussed the effects of this higher gravity level on the results

of the skin technology experiment.

Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Oxidation, Alloys, Binary Systems, Wetting,

Sample Deformation, Solid/Liquid Interface, Turbine Blade Ap-

plications, Thermal Gradient, Quench Process, Gas Pressure, Ac-

celeration Effects, Rocket Motion, Rocket Despin Failure,
Hardware Malfunction

Number of Samples: two

Sample Materials: aluminum-magnesium alloy AI-Mg 3
(AI*Mg*)

Container Materials: skin material produced by electrolytic

oxidation in ammonium tartrate or natural oxidation

(N'H*, O*)

Experiment/Material Applications:

See Sprenger, TEXUS i.

The AIMg 3 alloy was selected for this experiment because of its

low melting point. Further, a thin skin could be applied to the

alloy by either an anodic or chemical oxidation process.

References/Applicable Publications:

(i) Sprenger, H. and Schweitzer, K.: TEXUS-Experiments on Skin

Technology. XXXII Congress of International Astronautical Federa-

tion, Rome, Italy, pp. 1-11, September 6-12, 1981. (post-flight)
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(2) Skin Technology. In Summary Review of Sounding Rocket Ex-

periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February, 1991, p. 342. (post-
flight)

(3) Greger, G. : TEXUS and MIKROBA and Their Effectiveness and Ex-

periment Results. Presented at: In Space '87, October 13-14,

1987, Japan Space Utilization Promotion Center (JSUP) .
(identifies rocket failure)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany

K. Schweitzer

(Address Unverified, Possibly:)

Motoren und Turbinen Union (MTU)
Dachauerstrasse 665

D-8000 Munchen 50

Germany
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Principal Investigator(s): Sprenger, H. (i), Schweitzer, K. (2)

Co-Investigator(s): Unknown

Affiliation(s): (I) During TEXUS 3b: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Motoren und Turbinen Union

(MTU), Munich, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 3b

Launch Date/Expt Date: April 1981

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experimental Module TEM 01:

(Reconfigured after TEXUS 3)

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Skin Technoloqy

This TEXUS 3b experiment was the fourth in a series of investiga-

tions designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS i, TEXUS 2, TEXUS 3). Originally,

the experiment was to be a repeat of the investigation flown

during the TEXUS 3 mission. However, the TEXUS 3 mission

demonstrated that the employed A1 alloy samples could not be

successfully processed using external cooling. Therefore, an en-

tirely new experimental design employing active pedestal cooling

was chosen for the TEXUS 3b flight.

The TEM 01 furnace module of the TEXUS rocket was reconfigured

for TEXUS 3b such that a single AIMg 3 sample was attached by a 5

mm screw to a He cooled support structure. It was reported that

the sample could be directionally solidified within about three

minutes using this configuration. A 2 mm diameter bore was

drilled axially through the sample and four thermocouples (one of

which was used for temperature control) were inserted in the

bore.

A new skin coating process was used for the sample. The material

was dipped into SnO2, thus coating the AIMg 3 with a 0.3 micron

thick layer of the ceramic. This process coated (i) the outside

of the sample and (2) the inner thermocouple More. Finally, "The

front face was... [ground] so that the 'container' was open at

the side where melting would begin in order to allow the melt to

expand into free space and in this way to avoid corresponding

forces on the side faces of the sample." (I, p. i0)
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The time-temperature profile of the flight experiment was not

reported in the available literature.

Post-flight examination of the sample revealed severe deforma-

tion, indicating (i) that residual forces acted on the sample and

(2) the sample coating thickness was not sufficient to withstand

these forces. The sample exhibited regions of crumpling and in-

ward deformation indicative of fluid motions within the melt.

There was also a twisting of the open front face of the sample

(approximately 25 ° clockwise). An oxide layer was observed

covering the open face which acted as a skin to stabilize this

area of the sample. In the section which solidified last, the

SnO 2 skin was corrugated with a wavelength of I.i mm. This cor-
rugation may have been caused by instabilities produced by volume

expansion of the alloy during melting. However, this corrugation

behavior had not been observed during ground experiments.

It was also reported that there was an increase in sample volume.

This increase was attributed to voids caused by volume shrinkage

during solidification in the last solidified section of the

sample. The presence of these voids indicated "...the applied

experimental design was not effective in compensating the volume

alteration .... " (I, p. ii) It was also noted that the inner skin

within the cavity was very stable. This tends to confirm a main

advantage of skin technology: during melting and solidification,

inner cavities will remain stable.

Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Alloys, Binary Systems, Ceramics, Wetting,

Free Surface, Sample Deformation, Volume Expansion, Cavity,

Voids, Sample Shrinkage, Solid/Liquid Interface, Turbine Blade

Applications

Number of Samples: one

Sample Materials: aluminum-magnesium alloy, AIMg 3

(AI*Mg*)

Container Materials: skin material: dip-coated tin oxide, SnO 2

(Sn*O*)

Experiment/Material Applications:

See Sprenger, TEXUS i; Sprenger, TEXUS 3.
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A SnO 2 dip-coated skin was used because (i) it can be applied to
all types of alloys and (2) it coats both the outer surface and

the inner cavities. Ground-based experiments indicated that the

skin illustrated good stability against metallostatic pressures

and did not react with the molten alloy.

Referenoes/Applioable Publications:

(i) Sprenger, H. and Schweitzer, K.: Texus Experiments on skin
Technology. 32nd international Astronautical Federation

Congress, Rome, Italy, September 6-12, 1981, IAF-81-148,

Preprint, 12 pp.

(2) skin Technology. In Summary Review of Sounding Rocket Ex-

periments in Fluid science and Materials Sciences, TEXUS 1 to 20,
MASER 1 and 2, ESA SP-l132, February, 1991, p. 342. (post-

f i ight )

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH

Prinzenstrasse 17

3000 Hannover 1

Germany

K. Schweitzer

(Address Unverified, Possibly:)
Motoren und Turbinen Union (MTU)

Dachauerstrasse 665

D-8000 M_nchen 50

Germany
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Principal Investigator(s): Sprenger, H. (I), Schweitzer, K. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1) During TEXUS 4: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Motoren und Turbinen Union

(MTU), Munich, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 4

Launch Date/Expt Date: May 1981

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01:

(reconfigured after TEXUS 3)

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Skin Technology

This TEXUS 4 experiment was the fifth in a series of investiga-

tions designed by Sprenger et al. to study the feasibility of

casting materials under low-g conditions using skin technology

(see Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b). The experi-

ment was performed to supplement the earlier TEXUS 3b investiga-

tion.

Examination of the TEXUS 3b sample after low-gravity processing

revealed that the specimen had been severely deformed. This
deformation was attributed to the thinness of the skin

(approximately 0.3 microns). Therefore, the objective of this

TEXUS 4 experiment was to process a sample using a thicker coat-

ing.

It was reported that all TEXUS 4 experiment parameters (including

sample composition (AIMg3)), were the same as those of the TEXUS
3b experiment except that the TEXUS 4 sample skin thickness was 2

microns (see Reference (i)). <Note: It was reported in a later

paper (see Reference (2)) that the skin thickness of the TEXUS 4

sample was 3 microns.> No discussion of the time-temperature

profile for the TEXUS 3b or TEXUS 4 experiments was provided.

Post-flight examination of the TEXUS 4 sample revealed that the

specimen was severely deformed. The deformation was not,

however, as great as that of the TEXUS 3b sample, which il-

lustrated the contribution of skin thickness to shape stability.

The open front face of the TEXUS 4 sample exhibited a twisting of

i0 ° clockwise (compared to 25 ° anticlockwise for the TEXUS 3b

sample).
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It was reported that "Forces de to interfacial tension were...

responsible for the deformation of the TEXUS IV sample .... Be-
cause of insufficient thickness the skin was not rigid enough to

retain the original shape of the sample .... " (2, p. 89) An ear-

lier publication, which discussed the TEXUS 3b and TEXUS 4

results, reported that "The deformation as such is not...

[explained] by spheroidization according to surface tension since

the original length of the sample is fully restored. Also crum-

pling and regions of inward deformation indicate that fortuitous

motions of the melt must have caused the observed disfiguring of

the specimens." (i, p. i0)

All other observations of the TEXUS 4 sample were the same as

those reported for the TEXUS 3b specimen (see Sprenger, TEXUS

3b) .

When the results from TEXUS 1 and TEXUS 2 were compared with

those from TEXUS 3, TEXUS 3b, and TEXUS 4, the following conclu-

sions were reported:

(I) The most intensive forces acting against shape stability are

(a) volume expansion during melting and (b) shrinkage during

solidification.

(2) Extremely thin skins (less that i0 microns) may have been in-

fluenced by additional forces (other than those mentioned above)

during low-gravity processing. For instance, gas flow from other

furnace chambers may have passed into the processing chamber,

thus deforming the skin.

(3) "The elimination of free surface forces by covering the alloy

with a good wetting skin seems to be effective as no tendency of

spheroidization of the samples could be observed in all experi-

ments." (i, p. ii)

(4) Additional stabilization may be provided by the insertion of

cavities into the specimen.

Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Alloys, Binary Systems, Wetting, Surface

Tension, Free Surface, Free Surface Elimination, Interfacial Ten-

sion, Sample Deformation, Volume Expansion, Sample Shrinkage, Gas

Injection, Solid/Liquid Interface, Turbine Blade Applications
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Number of Samples: one

Sample Materials: aluminum-magnesium alloy, AIMg 3
(AI*Mg*)

Container Materials: skin material: dip-coated tin oxide, SnO 2
(Sn*O*)

Experiment/Material Applications:

See Sprenger, TEXUS 3b.

References/Applicable Publications :

(i) Sprenger, H. and Schweitzer, K.: Texus Experiments on Skin

Technology. 32nd International Astronautical Federation

Congress, Rome, Italy, September 6-12, 1981, IAF-81-148,

Preprint, 12 pp.

(2) Sprenger, H.: Skin Castings of Alloys and Composites -

Results of SL-I and TEXUS Experiments. In Proceedings of 5th

European Symposium on Material Sciences Under Microgravity,

Schloss Elmau, November 5-7, 1984, ESA SP-222, pp. 87-94. (post-

flight)

(3) Skin Technology. In Summary Review of Sounding Rocket Ex-

periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February 1991, pp. 344-345. (post-

flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH

Prinzenstrasse 17

3000 Hannover 1

Germany

K. Schweitzer

(Address Unverified, Possibly:)

Motoren und Turbinen Union (MTU)

Dachauerstrasse 665

D-8000 M_nchen 50

Germany
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Principal Investigator(s): Sprenger, H. (1), Schweitzer, K. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1) During TEXUS 5: Maschinenfabrik Augsburg-

Nurnburg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Motoren und Turbinen Union

(MTU), Munich, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 5

Launch Date/Expt Date: April 1982

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-i: Isother-
mal Four Chamber Furnace

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Skin Technoloq7

This TEXUS 5 experiment was the sixth in a series of investiga-

tions designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS I, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS

4).

Although Reference (I) indicated that the experiment was per-

formed during the TEXUS 5 mission, no discussion of the ex-

perimental objectives, setup, or results could be located.

Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Solid/Liquid Interface, Turbine Blade Ap-

plications

Number of Samples: unknown

Sample Materials: unknown
Container Materials: unknown

Experiment/Material Applications:

See Sprenger, TEXUS 1.
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References/Appllcable Publications:

(I) Walter, H. U.: Results of Materials-Science Experiments with

Sounding Rockets. ESA Journal, Vol. 7, No. 3, 1983, pp. 235-256.

(post-flight)

(2) Sprenger, H: Skin Casting of Alloys and Composites Results

of SL-1 and Texus Experiments. In ESA 5th European Symposium on

Material Sciences Under Microgravity, Schloss Elmau, November 5-

7, 1984, ESA SP-222, pp. 87-94. (post-flight; this reference may

be applicable; it provides a general discussion of the skin tech-

nology experiments performed during the TEXUS missions)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany

K. Schweitzer

(Address Unverified, Possibly:)

Motoren und Turbinen Union (MTU)

Dachauerstrasse 665

D-8000 M_nchen 50

Germany
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Principal Investigator(s): Sprenger, H. (1), Schweitzer, K. (2)

Co-Investigator(s}: Unknown

Affiliation(s): (1) During TEXUS 7: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Motoren und Turbinen Union

(MTU), Munich, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 7

Launch Date/Expt Date: May 1983

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-2: Isother-

mal Four Chamber Furnace

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Skin Technology

This TEXUS 7 experiment was the seventh in a series of investiga-

tions designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS

4, TEXUS 5).

Although Reference (i) indicated that the experiment was per-

formed during the TEXUS 7 mission, no discussion of the ex-

perimental objectives, setup, or results could be located.

Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Solid/Liquid Interface

Number of Samples: unknown

Sample Materials: unknown
Container Materlals: unknown

Experiment/Material Applications:

See Sprenger, TEXUS I.
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References/Applicable Publications:
(i) Communication with the DFVLR, Federal Republic of Germany.

(2) Sprenger, H: Skin Casting of Alloys and Composites Results

of SL-1 and Texus Experiments. In ESA 5th European Symposium on

Material Sciences Under Microgravity, Schloss Elmau, November 5-

7, 1984, ESA Publication SP-222, pp. 87-94. (post-flight; This

reference may be applicable; it provides a general discussion of

the skin technology experiments performed during the TEXUS mis-

sions.)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany

K. Schweitzer

(Address Unverified, Possibly:)

Motoren und Turbinen Union (MTU)
Dachauerstrasse 665

D-8000 M6nchen 50

Germany
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Principal Investigator(s): Sprenger, H. (i)

Co-Investigator(s): Unknown

Affiliation(s) : (1) During STS-009: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #9, STS-009 (STS 41-A, Spacelab i: Columbia)

Launch Date/Expt Date: November 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility

Processing Facility: Isothermal Heating Facility (IHF) Furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Skin Technology (IES303)

This Spacelab 1 experiment was the eighth in a series of inves-

tigations designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS

4, TEXUS 5, TEXUS 7).

The previous experiments in this investigative series were con-

ducted during sounding rocket flights throughout the TEXUS

program. The results from the TEXUS experiments, as well as

ground-based studies, led to the conclusions that the main con-

tributions to sample skin deformation were (i) volume change

during melting and resolidification and (2) interracial forces

between the melt and applied skin. These early experiments also

indicated that these detrimental forces could be countered by the

use of (i) a sufficiently stiff (thick) skin and (2) a non-

wetting expansion reservoir (which compensated for sample volume

change).

The objectives of this Spacelab 1 experiment were to (I) confirm

the low-gravity shape stability of a liquid metal contained by a

ceramic skin and (2) determine the microstructural differences

between a l-g and low-gravity processed monovariant eutectic al-

loy.

The eutectic sample selected for the mission consisted of a

gamma/gamma(superprime) - alpha, Ni-AI-Mo alloy. <Note: It ap-

pears that prior to the flight, an aluminum oxide coating was to

be applied to the sample. However, no publication, published

after the flight of the STS-009 mission, could be located which

confirmed that the sample was coated with the aluminum oxide as

planned.>
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Reportedly, the sample was to be directionally solidified in the
Spacelab Isothermal Heating Facility (IHF). However, "...this
experiment could not be performed in SL-I [Spacelab i] due to
breakdown of the IHF power supply." (i, p. 90)

No further information concerning the objectives, procedures, or
results of this experiment could be located.

Key Words: Technological Experiments, Melt and Solidification,
Directional Solidification, Skin Technology, Skin Casting, Coated
Surfaces, Thin Films, Alloys, Ceramics, Ternary Systems, Eutec-

tics, Wetting, Interfacial Tension, Interface Phenomena,

Solid/Liquid Interface, Sample Deformation, Volume Change, Volume

Compensation, Turbine Blade Applications, Hardware Malfunction,

Sample Not Processed As Planned

Number of Samples: one

Sample Materials: eutectic alloy of gamma/gamma(superprime)-alpha

nickel-aluminum-molybdenum

(Ni*AI*Mo*)

Container Materials: skin material: unknown, possibly alumina

(AI*O*)

Experiment/Material Applications:

See Sprenger, TEXUS i.

The specific reason why the skin material was chosen was not

presented in available publications. It was stated that the

sample material, (the Ni-AI-Mo alloy) was "...of technical inter-

est .... " (I, p. 90)

See also, Sprenger, Spacelab DI, WL-IHF-03 (this chapter).

References/Applicable Publications:

(i) Sprenger, H.: Skin Casting Of Alloys and Composites:

Results Of Spacelab (SL)-I and TEXUS Experiments. In ESA 5th

European Symposium on Material Sciences Under Microgravity.

Results Of Spacelab i, Schloss Elmau, November 5-7, 1984, ESA SP-

222, pp. 87-94. (post-flight)
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(2) Chassay, R. P. and Schwaniger, A.: Low-G Measurements by

NASA. In Workshop Proceedings of Measurement and Characteriza-

tion of the Acceleration Environment On Board the Space Station,

August 11-14, 1986, Guntersville, Alabama, pp. 9-1 - 9-48.

Teledyne Brown Engineering Publication (acceleration measure-

ments on Spacelab I; post-flight)

(3) Sprenger, H. J.: Directional Solidification of Metals and

Alloys. Appl. Microgravity Tech., i, 1987, pp. 30-36. (post-

flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany
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Principal Investigator(s): Sprenger, H. (i), Schweitzer, K. (2)

Co-Investigator(s): None

Affiliation(s): (i) During TEXUS 9: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Motoren und Turbinen Union

(MTU), Munich, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 9

Launch Date/Expt Date: May 1984

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-I: Isother-
mal Furnace

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Skin Technology

This TEXUS 9 experiment was the ninth in a series of investiga-

tions designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS

4, TEXUS 5, TEXUS 7, Spacelab i).

The specific objective of the experiment was to control the shape

of a molten alloy sample under low-gravity conditions. The ob-

jective was to be accomplished by (I) using a thin coating of

ceramic material which is poorly wetted by the molten alloy, (2)

using a hole in the top of the skin which compensates for volume

expansion during melting, and (3) preventing oxidation of the al-

loy free surface.

During the TEXUS 9 flight, a rectangular silver sample, coated

with a 20 micron thick skin of TiO_/Ni, was directionally
solidified. The specimen had "...a cavlty whose volume is in the

order of the volume increase [of the sample material] during

melting. Assuming that the melt does not leave the skin

containment[,] the developing free surface should move back

during solidification according to the wetting behavior of the

system." (2, p. 88) It was believed that if solid oxides were

not on the free surface of the silver melt, "...this design

should work." (2, p. 88).

Post-flight analysis of the sample indicated that there was no

deformation of the skin. However, the large wetting angle be-

tween the skin and alloy and the large capillary forces were

responsible for the detachment of a portion of the melt from the
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edges and corners of the skin. It was concluded that an optimum

design of a skin coating should be (I) well wetted by the melt in

those areas where shape conservation of the sample is required

and (2) poorly wetted by the melt in those areas used for volume

compensation.

Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Ceramics, Alloys, Wetting, Non-Wetting of

Container, Contact Angle, Surface Tension, Free Surface, Capil-

lary Forces, Solid/Liquid Interface, Oxidation, Thermal Gradient,

Volume Retention, Sample Detachment from Crucible, Turbine Blade

Applications

Number of Samples: one

Sample Materials: silver alloy

(Ag*)
Container Materials: skin material: titanium oxide, TiO 2, with

nickel

(Ti*O*, Ni*)

Experiment/Material Applications:

See Sprenger, TEXUS i.

The reasons why silver was selected as the sample material or

TiO 2 with Ni was selected as the skin coating were not detailed

in available publications.

References/Applicable Publications:

(i) Sprenger, H. J.: Directional Solidification of Metals and

Alloys by Means of Skin Technology. Appl. Microgravity Tech., i,

1987, pp. 20-36. (post-flight)

(2) Sprenger, H.: skin Casting of Alloys and Composites Results
of SL-I and Texus Experiments. In ESA 5th European Symposium on

Material Sciences Under Microgravity, Schloss Elmau, November 5-

7, 1984, ESA SP-222, pp. 87-94. (This reference may be ap-

plicable, mission numbers are unspecified.)
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(3) Skin Technology. In Summary Review of Sounding Rocket Ex-
periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,
MASER 1 and 2, ESA SP-I132, February 1991, pp. 346-347. (post-
flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Mannover 1

Germany

K. Schweitzer

(Address Unverified, Possibly:)

Motoren und Turbinen Union (MTU)
Dachauerstrasse 665

D-8000 M_nchen 50

Germany
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Principal Investigator(s): Sprenger, H. (I)

Co-Investigator(s): None

Affiliation(s): (i) During TEXUS ii: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS II

Launch Date/Expt Date: April 1985

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-i: Isother-

mal Four-Chamber Furnace Module with sample pedestal

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Protective Film Engineering: Skin Technology

During the protective film engineering process, a skin-coated al-

loy is refined by melting and resolidifying a cast material.

Throughout the processing, the alloy retains its original shape.

This TEXUS Ii experiment was the tenth in a series of investiga-

tions designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS

4, TEXUS 5, TEXUS 7, Spacelab i, TEXUS 9). The experiment was

the first of a two part investigation; the second part was per-

formed during the TEXUS 12 mission (see Sprenger, TEXUS 12).

Earlier TEXUS studies in this investigative series had il-

lustrated the importance of (i) providing for the volume change

of sample materials during the melt and resolidification process

and (2) counteracting interfacial forces which can cause sample

shape deviation. It was found that these issues can be addressed

by (i) the use of non-wetting expansion reservoir (which compen-

sates for volume changes) and (2) the use of a skin of sufficient

stiffness (thickness) which can be wetted by the melt.

Thus, the joint objectives of the TEXUS ii and TEXUS 12 experi-
ments were:

(i) "- conservation of the sample shape by means of a suitable

volume compensation system and of a well wetted skin;

(2) "- study of the behaviour of model dispersion alloys during

melting and solidification. In particular the influence of the

wetting behavior of the Cu-matrix [melt] on both the Mo
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[protective] skin and the dispersed particles (AI203 or Mo) was
to be studied." (2, p. 348)

During ground-based and earlier TEXUS experiments (in this inves-

tigative series) it was determined that particles which are

wetted poorly by the melt (e.g. AI203 particles in Cu melt) tend

to be "...pressed out of the melt under ig, [and] under low

gravity they may be slightly shifted or twisted by the

solidification front .... " (i, p. 16, translation) However, par-

ticles which are appropriately wetted (e.g. Mo particles in Cu

melt) tend to be well distributed throughout the matrix.

In an effort to investigate the solidification of particles with

different wetting behaviors, a Cu-Al203 particle dispersion
sample was processed during this experiment and a Cu-Mo particle

sample was processed during the TEXUS 12 experiment.

Prior to the TEXUS ii flight, a Cu sample containing a 0.1% dis-

persion of AI203 particles was prepared by powder-metallurgical

techniques. The sample was plasma coated with Mo (which is

wetted by molten copper). A reservoir for volume expansion was

included. The reservoir had been coated with AI203 which is not
wetted by the Cu melt. <Note: The exact location of the reservoir

was unclear to the editors.>

The TEXUS ii sample was processed in one of the four chambers of

the TEXUS Experiment Module TEM 01-i. Before launch, the furnace

was preheated to 900°C. Once in flight, the sample was melted at

a temperature of i070°C. The sample was directionally solidified

using a sample pedestal which acted as a cooling base.

Post-flight analysis of the sample revealed that the melted and

re-solidified portion of the material contained holes that ranged

in size from about 20 microns to 2 mm in diameter. The holes

which were under i00 microns were round while those larger than

I00 microns "...have an irregular shape in the lower portion of

the sample, with sometimes relatively thin walls between

cavities." (i, p. 17, translation) The alumina particles had ag-

glomerated in the holes and at the free surfaces which were both

formed during the volume expansion. It was determined that the

holes were created by CO formation. These types of holes were

absent during ground-based experiments since the bubbles could

rise through the melt. It was reported that "Due to the motions

induced in the melt, no conclusion could be drawn with respect to

the experiment objectives." (2, p. 348)

No other information concerning this experiment could be located
at this time.
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Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Plasma Spray Coating, Dispersion Alloys,

Powder Metallurgy, Binary Systems, Particle Distribution, Par-

ticle Dispersion, Particle Agglomeration, Particle Motion, Wet-

ting, Solid/Liquid Interface, Interfacial Tension, Thermal

Gradient, Volume Expansion, Volume Compensation, Sample Deforma-

tion, Non-wetting of Container, Gas Formation, Bubbles, Absence

of Buoyancy Forces (Detrimental), Turbine Blade Applications

Number of Samples: one

sample Materials: copper powder with 0.1% AI203 particles
(Cu*AI*O)

Container Materials: skin material: plasma-sprayed molybdenum

(Mo*)

Experiment/Material Applications:

See Sprenger, TEXUS i.

See the above experiment summary for a discussion of sample

material selection.

References/Applicable Publications:

(i) Sprenger, H.: Protective Film Engineering.

Abschulussbericht 1985. (in German; post-flight)

In TEXUS 11/12

(2) Skin Technology. In Summary Review of Sounding Rocket Ex-

periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February 1991, pp. 348-349. (post-

flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH

Prinzenstrasse 17

3000 Hannover 1

Germany
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Principal Investigator(s): Sprenger, H. (i)

Co-Investigator(s): None

Affiliatlon(s) : (1) During TEXUS 12: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace, Hannover, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 12

Launch Date/Expt Date: May 1985

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-I (upgraded

from TEM 01-i)

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Protective Film Engineerinq: Skin Technoloqy

This TEXUS 12 experiment was the eleventh in a series of inves-

tigations designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS

4, TEXUS 5, TEXUS 7, Spacelab i, TEXUS 9, TEXUS ii). The experi-

ment was also the second of a two-part investigation; the first

part took place during the TEXUS ii flight (see Sprenger, TEXUS

ii). The joint objectives of the TEXUS ii and TEXUS 12 experi-
ments were:

(i) "- conservation of the sample shape by means of a suitable

volume compensation system and of a well wetted skin;

(2) "- study of the behaviour of model dispersion alloys during

melting and solidification. In particular the influence of the

wetting behavior of the Cu-matrix [melt] on both the Mo

[protective] skin and the dispersed particles (AI203 or Mo) was
to be studied." (2, p. 348)

The TEXUS 12 sample was a powder-metallurgically prepared copper

material which (I) had 0.1% dispersion of Mo particles and (2)

was plasma coated with Mo film. All other reported experimental

parameters were the same as the TEXUS ii investigation.

Post-flight analysis of the low-gravity sample indicated that the

Mo particles were uniformly distributed over the entire melted

region. Unlike the TEXUS ii sample, the specimen was practically

free of holes. When examined under higher magnification, it was

observed that "...the particles [had] layered onto each other

within the melt to form a rigid network." (i, p. 17,
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translation) Reportedly, "...the particle network formation

ability depends on their volume fraction in the molten matrix.

The effect of an increased motion or extenal forces (e.g. floata-

tion of bubbles on Earth...) has already been observed and showed

that particle networks become solid only at higher volume frac-

tion of particles." (2, p. 350)

Other conclusions were presented:

"The mesh width of the network also... [appeared]... to depend on

the motion in the melt (for constant volume percentage). The

results can be interpreted that the TEXUS 12 sample... [had]... a

clearly smaller mesh width of the network (about i00 microns)

than that of the ground samples (about 200 microns), and as the

extreme case, we [had] formation of a single mesh, i.e. the com-

plete emptying of the sample of particles.

"Regarding the behavior of the protective film we [found] that

the improved wetting from the use of Ar/H 2 atmosphere on the

ground, was not observed. <Note: This was the only reference to

the Ar/H 2 atmosphere.>

"The form stability of the melts within the protective film

(characterized in TEXUS 9 by complete separation of the edges in

the molten state from the inside of the protective film) was sig-

nificantly increased in TEXUS 12. The conclusion from TEXUS 9

that the wetting behavior was the decisive criterion for form

stability of film-coated grains, was reinforced. The differently

long release of the melts from the edges of the protective film

[indicated] that the degree of wetting (determined e.g. by the

contact angle in the Young relation) is not an absolute constant

quantity over a larger surface." (i, pp. 18-19, translation)

Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Plasma Spray Coating, Binary Systems, Pow-

der Metallurgy, Dispersion Alloys, Homogeneous Dispersion, Par-

ticle Distribution, Particle Dispersion, Surface Tension, Wet-

ting, Contact Angle, Solid/Liquid Interface, Thermal Gradient,

Volume Retention, Volume Compensation, Sample Detachment from

Crucible, Interface Physics, Turbine Blade Applications
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Number of 8amples: one

8ample Materials: copper powder with molybdenum particles
(Cu*Mo*)

Container Materials: skin material: plasma-sprayed molybdenum

(Mo*)

Experiment/Materlal Applications:

See Sprenger, TEXUS 1 and Sprenger, TEXUS ii Experiment section.

References/Applicable Publications:

(I) Sprenger, H.: Protective Film Engineering.

Abschulussbericht 1985. (in German; post-flight)
In TEXUS 11/12

(2) Skin Technology. In Summary Review of Sounding Rocket Ex-

periments in Fluid Science and Materials Sciences, TEXUS 1 to 20,

MASER 1 and 2, ESA SP-I132, February 1991, pp. 348-350. (post-

flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany
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Principal Investigator(s}: Sprenger, H. (i)

Co-Investigator(s): Unknown

Affiliation(s) : (1) During 61-A: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #22, STS-030 (STS 61-A, Spacelab DI:

Challenger)

Launch Date/Expt Date: October 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility, Materials Science Double

Rack (MSDR)

Processing Facility: Isothermal Heating Facility with Gradient

Device (IHF/G)

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:

Skin Technoloqy/Eutectic Solidification (WL-IHF-03)

The Spacelab D1 experiment was the twelfth in a series of inves-

tigations designed by Sprenger et al. to study the feasibility of

casting materials under low-gravity conditions using skin tech-

nology (see Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS

4, TEXUS 5, TEXUS 7, Spacelab i, TEXUS 9, TEXUS ii, TEXUS 12).

The investigation was the second of two experiments specifically

designed to study the low-gravity directional solidification of a

coated eutectic alloy (see Sprenger, Spacelab I).

Objectives of this Spacelab experiment included (i) confirming

the use of skin technology for long-term shape stability and for

the prevention of cavities within the melt and (2) investigating

the convective-free solidification of metallic alloys.

The sample material selected for the investigation was a

gamma/gamma(superprime)-alpha, Ni-AI-Mo alloy. It was hoped that

directional solidification of this alloy would result in a

regular arrangement of Mo fibers (with a high aspect ratio) con-

tained within a Ni/Ni3AI (gamma/gamma(superprime)) matrix. The

material is highly sensitive to various solidification parameters

(e.g., growth rate, thermal gradient, compositional fluctuations)

and, therefore, was expected to provide information concerning

convective flow patterns immediately ahead of the solidification

interface.

The sample (7 mm diameter, 150 mm long) was plasma-spray coated

with an 80 micron thick skin composed of ZRO2-7.5% Y203 . The
sample was cylindrical with the exception of the last section
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which had a flat longitudinal face. For safety reasons, the
coated sample was placed within an alumina tube. A volume com-
pensation bore was drilled into the end of the sample exhibiting
the flat face. Four thermocouples were included within the
sample to define the thermal parameters.

The Spacelab D1 Isothermal Heating Facility 'with gradient
device' (IHF/G) was used to process the eutectic alloy. In order
to investigate the transition from aligned to cellular growth,
the sample was subjected to four translation rates from 0.I to
0.5 mm/min during the mission. The last 45 mm of the sample was
quenched (complete details concerning the time-temperature
profile of the sample can be found in Reference (4)).

Post-flight analysis of the space-processed sample indicated that
there was no deformation of the outer skin or the sample. The
shape and stability of the end with the flat face were excellent.
No pores or holes could be detected throughout the length of the
sample indicating that the skin was wetted by the melt.
Microstructural examination of the sample indicated that there
was no detachment of the melt from the skin and, thus, a suppres-
sion of surface-driven convection was realized.

These results illustrated that processing within a wetted skin
was possible and that this technique is (i) important in regards
to the suppression of surface-driven convection under low-gravity
conditions and (2) a simple way to compensate for volume change
during melting and solidification without the use of an external
device.

Microstructural examination of the flight sample showed five dis-
tinct regions, separated according to the expected four transla-
tion rates and an additional, unexpected translation rate. The
first region (approximately 0.3 mm of the sample) was solidified
at an unintended rate of about 0.025 mm/min due to "...non-equal
pulling velocity of the furnace." (4, p. 346) The microstructure
exhibited a coarse eutectic with periodic thickening of Mo
fibers. The first 1 mm of the second region (rate = 0.145

mm/min) contained an irregularly shaped carbide phase with a com-

position of Ni6Mo6C. The remainder of the second region
(approximately i0 mm) consisted of parallel Mo fibers and paral-

lel blades of the carbide phase within a Ni/AI matrix. The car-

bide phase was not observed in l-g processed samples except

"...as a blocky phase in the periphery region where the

liquid/solid phase boundary is curved .... " (6, p. 352) The first

4-5 mm of the next region (rate = 0.259 mm) also consisted of the

parallel eutectic growth with carbide blades. However, the in-

terfiber distance was decreased. After 4-5 mm, the parallel
structure broke down and became cellular. This transition oc-

curred without change in the growth rate or thermal gradient.
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The next two regions (rate = 0.37 mm/min and 0.48 mm/min) con-

sisted of a continuance of the cellular structure. However, the

cell structure was much larger and the cell length was much

longer than that seen in similarly processed samples under l-g

conditions.

Analysis of the above results and comparison of low-gravity and

l-g processed samples indicated that the main difference in

microstructures between the materials was due to the presence of

the carbide phase in the space sample. The first 1 mm section of

the space sample did not contain a carbide phase indicating

"...that during the early stage of solidification a boundary

layer [had] formed which continuously was enriched with carbon.

The formation of the carbide band occurred as the solubility

limit for carbon was surpassed." (6, p. 353) During processing

under l-g conditions, the transport of the carbon was increased

due to convection. This increase in transport velocity resulted

in less carbon within the boundary layer and thus the carbides

were not formed. The formation of the Mo6Ni6 C carbide also acted
to shift the Ni and Mo content at the solidification interface.

In the l-g processed samples, the transition from aligned to cel-

lular growth occurs at a translation rate of about 0.3 mm/min.

When processed under low-gravity conditions, this transition oc-

curred at a rate of 0.259 mm/min. It was assumed that the dif-

ference in transisiton rate was due to the "..,compositional

shift along the monovariant trough caused by the continuous

precipitation of... carbides from the melt ahead of the moving

interface." (6, p. 353)

A complete discussion of the results and a description of a pos-

sible model of the convection at the interface can be found in

Reference (6).

Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Plasma Spray Coating, Alloys, Eutectics,

Fiber Eutectics, Fibers, Ternary Systems, Wetting, Wetting of

Container, Free Surface Elimination, Solid/Liquid Interface, In-

terface Physics, Solidification Front Physics, Boundary Layer,

Surface Tension-Driven Convection, Marangoni Convection, Maran-

goni Convection Diminished, Volume Retention, Volume Compensa-

tion, Sample Deformation, Sample Microstructure, Porosity,

Cavity, Cellular Morphology, Precipitation, Growth Rate, Transla-

tion Rate, Pulling Rate, Thermal Gradient, Quench Process, Tur-

bine Blade Applications, Hardware Malfunction
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Number of Samples: one

Sample Materials: eutectic alloy of gamma/gamma(superprime)-alpha

nickel-aluminum-molybdenum

(Ni*AI*Mo*)

Container Materials: skin material: plasma-sprayed ZRO2-7.5%

Y203 ; cartridge material: A1203, alumina
(Zr*O*Y*O*, AI*O*)

Experiment/Material Applications:

See Sprenger, TEXUS 1 (Skin Technology)

Earlier experiments, performed on the ground and during the TEXUS

program, indicated that thin (30 to i00 micron) coatings were

sufficient to retain the shape of a cast material during melting

and resolidification under low-gravity conditions. If the skin

had good wetting properties with respect to the melt, then the

formation of pores between the melt and skin should be

suppressed. (The formation of pores resulted in localized fluid

flow caused by Marangoni convection and thus had a detrimental

effect on the solidification of the sample.)

It is believed that the study of solidification of metallic al-

loys under low-gravity conditions will lead to (i) improved un-

derstanding of solidification processes on Earth and (2) produc-

tion of materials with improved properties in space. Direc-

tionally solidified, eutectic alloys (in which aligned fibers or

lamellae are embedded within a matrix) are of particular inter-

est.

Earlier studies had shown that low-gravity processing of eutec-

tics can lead to (i) an improved microstructure and (2) an in-

crease in the fiber density. However, the results from low-

gravity processing have been limited to a small number of alloy

systems. Therefore, it was decided to study a eutectic alloy,

(gamma/gamma(superprime)-alpha) Ni-AI-Mo, which has important

high temperature applications.

The specific reason why the ZRO2-7.5% Y203 skin was employed was
not detailed in available publications.

References/Applicable Publications:

(i) Sprenger, H.: Skin Technology-Directional Solidification of

Multiphase Alloys. In BMFT/DFVLR Scientific Results of the Ger-

man Spacelab Mission DI, Abstracts of the Di-Symposium, Norderney

(Germany), August 27-29, 1986, pp. 36-37. (post-flight)
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(2) Sprenger, H.: Skin Technology. In Scientific Goals of the

German Spacelab Mission DI, WPF, 1985, p. 147. (preflight)

(3) Sprenger, H.: Stutzhauttechnologie. Natur wissenschaften,

73.Jahrgang Heft 7, July 1986, pp. 390-395. (in German; post-

flight)

(4) Sprenger, H. J.: Skin Technology-Directional Solidification

of Multiphase Alloys. In Proceedings of the Norderney Symposium

on Scientific Results of the German Spacelab Mission DI, Norder-

ney, Germany, August 27-29, 1986, pp. 342-349. (post-flight)

(5) Hamacher, H., Merbold, U., and Jilg, R. : Analysis of

Microgravity Measurements Performed During DI. In Proceedings of

the Norderney Symposium on Scientific Results of the German

Spacelab Mission DI, Norderney, Germany, August 27-29, 1986.

(post-flight; acceleration measurements on DI)

(6) Sprenger, H. J.: Directional Solidification of a Eutectic Al-

loy Results of the D-I Experiment. In Proceedings of the Sixth

European Symposium on Material Sciences under Microgravity Condi-

tions, Bordeaux, France, December 2-5, 1986, ESA SP-256, pp. 349-

354. (post-flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany

Dr. Ir. H. Nieswaag

Laboratory voor Metaalkunde

Techniche Hogeschule

Rottersdamseweg 137

NL-2628 AL Delft

The Netherlands
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Principal Investigator(s)= Sprenger, H. (1), Nieswaag, H. (2)

Co-Investlgator(s): Unknown
Affiliation(s)= (1) During STS 61-A: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany; (2) Technische Hochschule (Delft

University of Technology), Lab. veer Metaalkunde, Delft, The

Netherlands

Experiment Origin: Federal Republic of Germany
Mission: STS Launch #22, STS-030 (STS 61-A, Spacelab DI:

Challenger)

Launch Date/Expt Date: October 1985
Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility, Materials Science Double

Rack (MSDR)

Processing Facility: Isothermal Heating Facility (IHF) Furnace

Builder of Processing Facility: Messerschmitt-Boelkow-Blohm

(MBB/ERNO), Bremen, Germany

Experiment:
Skin Castinq on Grey Cast Iron (WL-IHF-07)

This Spacelab D1 experiment was the third in a series of inves-

tigations designed by Sprenger and/or Luyendijk et al. to study

the low-gravity directional solidification of cast iron (see

Luyendijk, TEXUS 6, Spacelab 1 (Chapter 14)). The experiment was
also the thirteenth in a series of investigations designed by

Sprenger et al. to study the feasibility of casting materials un-

der low-gravity conditions using skin technology (see Sprenger,

TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS 4, TEXUS 5, TEXUS 7,

Spacelab i, TEXUS 9, TEXUS ii, TEXUS 12, Spacelab D1 experiment

WL-IHF-03).

The objectives of this Spacelab D1 experiment were to (i) examine

the graphite growth in a eutectic, grey cast iron sample (with

low sulfur content) during directional solidification, (2) deter-

mine the diffusion of the sulfur in liquid cast iron, and (3) ex-

amine the directional solidification of a material using skin

technology. (The investigation was performed in parallel with D1

experiment WL-IHF-03 (see Sprenger, Spacelab DI, experiment

number: WL-IHF-03 (this chapter)).)

The employed cylindrical cast iron sample (6.5 x 149 mm) was com-

prised of two separate regions. Region 1 (had been directionally

solidified prior to the flight and contained 4.34 wt.% C, 1.04

wt.% Si, and 0.008 wt.% S. The region had a small neck section

which was used during the experiment to investigate the effect of

a sudden change in diameter on the resulting microstructure.

Region 2 contained 4.61 wt% C, 0.31 wt% si, and 0.005 wt% S. A
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small plug of iron-sulfide phase material (0.15 wt.% S) was lo-

cated at one end of region 2 and used for the diffusion of sulfur

study.

The sample contained four thermocouples: three within region 1

and one within region 2. The entire sample was plasma spray

coated with an alumina skin (A1203) approximately 80 microns
thick. Reportedly, the wetting angle between the cast iron and

alumina skin was greater than 90 o.

During the Spacelab D1 flight, the sample was processed in the

Isothermal Heating Facility _(IHF). First, the furnace was

evacuated and heated to 1350 UC-- Next, the sample was melted

directionally from region 2 to region 1 (in order to avoid

separation of the liquid column) and then directionally

solidified, from region 1 to region 2. During the directional

solidification process, two different furnace translation rates

were to be employed: 0.i mm/min for 140 min and 0.3 mm/min for
35 min.

It was reported in Reference (2) (a document published prior to

the Spacelab D1 flight) that region 2 would be quenched in order

to freeze the sulfur concentration. However, no references pub-

lished after the D1 mission could be located which confirmed this

quenching procedure.

Post-flight analysis of the time-temperature profile revealed

"...temperature fluctuations over distinct periods of time. They

are not caused by fluctuations in furnace temperature." (3, p.

350) The largest fluctuations were measured at the thermocouples

placed immediately before and immediately after the neck region

of the sample. "That suggests that the cooling of the gradient

device and/or the moving of the furnace was not stable. Whatever

the reason may be, temperature fluctuations are more or less fa-

tal to growing eutectics unidirectionally." (3, p. 350)

There also appeared to be a problem with the translating

mechanism of the furnace. Under nominal conditions, the furnace

moves over the sample to its position for the start of

solidification. "At the end of this stroke the furnace goes into

some blocking device with metallic springs. When, however, at

the planned moment of time the motordrive is switch to the

reverse direction [to begin directional solidification], it ap-

pears that for a period of about 20 minutes the gradient device

does not move. There is a dead stroke due to the blocking system

of the furnace." (3, p. 350)

Metallographic examination of region 1 indicated the presence of

alternating bands of fine and coarse graphite of varying widths.

These bands corresponded well with the temperature fluctuations.
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Within the slow translation rate region of the sample, three ac-

tual growth rates were determined from the position of the

fine/coarse graphite bands: 0.128, 0.221, and 0.231 mm/min. The

actual growth rate of l-g processed sample was 0.124 mm/min. The

reason for this difference in growth rate was unclear to the in-

vestigators. The actual growth rate of the high translation rate

region of the sample was estimated to be 0.42 mm/min, which was

higher than the 0.338 mm/min reported for the l-g processed

sample.

A graph of the low-gravity interlamellar spacing versus growth

rate was compared to similar data obtained from l-g experiments.

It appears that the lamellar spacing was not significantly dif-

ferent in the low-gravity and l-g processed materials (at leas_
for growth rates in the range of 2.0 x I0- to 6.0 x i0

cm/sec).

X-ray fluorescence methods were used to determine the distribu-

tion of sulfur in the longitudinal section of region 2. This ex-

amination revealed a build up of sulfur on the B side (side away

from the iron-sulfide plug) of region 2. This behavior was not

observed in the l-g processed sample and was most likely due to

the directional melting of the flight sample: "When side A [side

containing the iron-sulfide plug] of region 2 starts melting,

side B [had] been superheated already, so a distinct temperature

gradient is across region 2 in that period of the experiment.

"As mentioned above the sulphur in the...[plug]...is present as a

separate phase in the solid material. During melting droplets of

iron-sulphide will be formed, that have a distinct lifetime

before they have soluted in the warm liquid. In that period of

time, due to the temperature gradient, the small droplets or at

least a great part of it [sic] move to the hotter side of region

2 by a Marangoni effect. If the temperatures of side A and B

have been the same, apparently no or no strong convection oc-

curs." (3, p. 354)

Post-flight examination of the sample's ceramic skin indicated

high stability during the experiment. There was also no reaction

between the sample and alumina skin. The only damage to the

specimen was at the top of the skin which was broken. A few liq-

uid droplets were pressed out due to expansion of the melt. An

examination of the liquid meniscus at the top of the sample indi-

cated a non-wetting of the skin by the melt. Therefore, "...at

the thermocouple grooves the existence of a free surface during

the experiment should not be excluded." (3, p. 351)
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Key Words: Technological Experiments, Melt and Solidification,

Directional Solidification, Skin Technology, Skin Casting, Coated

Surfaces, Thin Films, Plasma Spray Coating, Ceramics, Eutectics,

Diffusion, Wetting, Contact Angle, Free Surface, Free Surface

Elimination, Surface Tension, Meniscus Shape, Sample Necking,

Volume Expansion, Non-wetting of Container, Solid/Liquid Inter-

face, Solidification Front Physics, Thermal Gradient, Superheat-

ing, Translation Rate, Growth Rate, Multiphase Media, Lamellar

Structure, Sample Microstructure, Liquid Columns, Drops, Drop

Formation, Marangoni Movement of Droplets, Dissolution, Quench

Process, Hardware Malfunction

Number of Samples: one

Sample Materials: eutectic grey iron, Fe-4.3 wt.% C-0.5 wt.% Si-

0.005 wt.% S

(Fe*C*Si*S*)

Container Materials: skin material: plasma-sprayed alumina,

A1203; cartridge materials: unknown
(AI*O*)

Experiment/Material Applications:

See Sprenger, TEXUS 1 (Skin Technology)

Grey cast iron is a material which has many technological ap-

plications. The structure of the material consists of graphite
flakes within an iron matrix. The size and distribution of these

flakes determine the mechanical properties of the cast iron and

are governed by solidification parameters such as cooling rate,

impurity level (e.g., sulfur), and convection within the melt.

The individual and/or combined influence of these parameters is

not yet well defined. Earth studies have not been able to

resolve the contributions of these parameters because sulfur

causes significant convection in the liquid which tends to over-

rule the influence of factors such as growth rate and thermal

gradient.

References/Applicable Publications:

(i) Malinowski, M., Nieswaag, H., and Sprenger, H.: Skin Casting

of Grey Cast Iron. In BMFT/DFVLR Scientific Results of the Ger-

man Spacelab Mission DI, Abstracts of the Dl-Symposium, Norder-

ney, Germany, August 27-29, 1986, pp. ii0-Iii. (post-flight)

(2) Sprenger, H. and Nieswagg, H.: Skin Casting of Grey Cast

Iron. In Scientific Goals of the German Spacelab Mission DI,

WPF, 1985, pp. 147-149. (preflight)

18-119



(3) Nieswaag, H. and Malinowska, M.: Skin Casting of Grey Cast

Iron. In Proceedings of the Norderney Symposium on Scientific

Results of the German Spacelab Mission DI, Norderney, Germany,

August 27-29, 1986, pp. 349-355. (post-flight)

(4) Hamacher, H., Merbold, U., and Jilg, R.: Analysis of

Microgravity Measurements Performed During DI. In Proceedings of

the Norderney Symposium on Scientific Results of the German

Spacelab Mission DI. Norderney, Germany, August 27-29, 1986.

(post-flight; acceleration measurements on DI)

(5) Sprenger, H. J.: Directional Solidification of Metals and

Alloys. Appl. Microgravity Tech. i, 1987, pp. 30-36. (post-

flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany

Dr. Ir. H. Nieswaag

Laboratory voor Metaalkunde

Techniche Hogeschule

Rottersdamseweg 137

NL-2628 AL Delft

The Netherlands
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Principal Investlgator(s): Sprenger, H. (i)

Co-Investigator(s): Unknown

Affiliation(s): (i) During TEXUS 15: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace space GmbH, Hannover, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 15

Launch Date/Expt. Date: May 1987

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-i

Builder of Processing Facility: Unknown, possibly the Swedish

Space Corporation, Solna, Sweden

Experiment:

Dispersion Alloys

Very little information concerning this experiment could be lo-

cated. However, it appears that this TEXUS 15 sounding rocket

experiment was the fourteenth in a series of investigations

designed by Sprenger et al. to study the feasibility of casting

materials under low-g conditions using skin technology (see

Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS 4, TEXUS 5,

TEXUS 7, Spacelab i, TEXUS 9, TEXUS ii, TEXUS 12, 2 experiments

on Spacelab DI).

Although the objective of the experiment was not specifically

stated, it appears that the overall goal of the investigation was

to study the stability of model dispersion alloys (each coated

with a protective skin) during melting and resolidification. The

sample material(s) selected for the investigation were not

reported and the experimental setup was not described in any
detail.

It was reported that shortly after the successful launch of the

TEXUS 15 rocket, data and television transmitters experienced a

partial failure. It was discovered that a lateral burnthrough of

the second stage of the rocket had occurred, and the stage in

turn, had collided with the prematurely separated payload. The

upper part of the payload, including the TEM 01-i module

parachuted to the Earth undamaged.

Documentation, which details any results of the experiment does

not appear to be available.
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Key Words: Technological Experiments, Melt and Solidification,

Skin Technology, Skin Casting, Coated Surfaces, Thin Films, Dis-

persion Alloys, Solid/Liquid Interface, Rocket Failure, Payload

Survivability

Number of Samples: unknown

Sample Materials: unknown

Container Materials: unknown

Experiment/Material Applications:

See Sprenger, TEXUS 1 and TEXUS ii Experiment section.

References/Applicable Publications:

(i) Experimentelle Nutzlast und Experimente TEXUS 15.

BMFT/DFVLR TEXUS 13-16 Abschlussbericht 1988, pp. 107-108.

German; post-flight)

In

(in

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany
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Principal Investlgator(s): Sprenger, H. (1)

Co-Investigator(s): Unknown

Affiliation(s}: (1) During TEXUS 16: Maschinenfabrik Augsburg-

Nurnberg AG, Munich, Federal Republic of Germany, Currently: In-

tospace GmbH, Hannover, Germany

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 16

Launch Date/Expt. Date: November 1987

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: TEXUS Experiment Module TEM 01-1

Builder of Processing Facility: Unknown, possibly the Swedish

Space Corporation, Solna, Sweden

Experiment:

Dispersion Alloys

Very little information concerning this experiment could be lo-

cated. However, it appears that this TEXUS 16 sounding rocket

experiment was the fifteenth in a series of investigations

designed by Sprenger et al. to study the feasibility of casting

materials under low-g conditions using skin technology (see

Sprenger, TEXUS i, TEXUS 2, TEXUS 3, TEXUS 3b, TEXUS 4, TEXUS 5,

TEXUS 7, Spacelab i, TEXUS 9, TEXUS Ii, TEXUS 12, 2 experiments

on Spacelab DI, TEXUS 15).

Although the objective of the experiment was not specifically

stated, it appears that the overall goal was to study the

stability of model dispersion alloys (each coated with a protec-

tive skin) during melting and resolidification. The sample

material(s) selected for the investigation were not reported and

the experimental setup was not described in any detail.

It was reported that shortly after the successful launch of

TEXUS 16, fuel in the second stage of the rocket did not ignite

as planned. After the apogee was reached and the rocket began to

fall, the yo-yo despin system was deployed as programmed. Due to

the unexpected excess rocket mass however, there was an incom-

plete reduction of rocket spin. Subsequently, the payload

separated from the second stage. Unfortunately the accompanying

parachute was not released. An unbraked impact of the payload

resulted in the destruction of all experiment modules including

the TEM 01-i module.

Documentation, which details any results of the experiment does

not appear to be available.
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Key Words: Technological Experiments, Melt and Solidification,

Skin Technology, Skin Casting, Coated Surfaces, Thin Films, Dis-

persion Alloys, Solid/Liquid Interface, Rocket Failure, Payload

Survivability

Number of Samples: unknown

Sample Materials: unknown
Container Materials: unknown

Experiment/Material Applications:

See Sprenger, TEXUS 1 and TEXUS ii Experiment section

References/Applicable Publications :

(i) Die Kampagne TEXUS 16.

Abschlussbericht 1988, pp. 109-111.

In BMFT/DFVLR TEXUS 13-16

(in German; post-flight)

Contact(s):

Dr. H. J. Sprenger

Intospace GmbH
Prinzenstrasse 17

3000 Hannover 1

Germany
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Principal Investigator(s): Eyer, A. (i), Nitsche, R. (2)

Co-Investigator(s): Unknown

Affiliation(s): (1,2) Kristallographisches Institut, Universit_t

Freiburg, Germany

Experiment Origin: Federal Republic of Germany
Mission: TEXUS 3

Launch Date/Expt. Date: April 1980

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Unknown, possibly: monoellipsoid mirror fur-

nace

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Haloqen Lamp Performance

This TEXUS 3 experiment was the first in a series of investiga-

tions designed by Eyer et al. to evaluate the low-gravity perfor-

mance of a halogen lamp.

A description of the specific experimental objectives and equip-

ment setup of the payload could not be located.

Reportedly, due to a rocket despin failure, TEXUS 3 did not

achieve the desired low-gravity level. The experiment was

reflown on TEXUS 3b (see Eyer, TEXUS 3b).

Documentation detailing any results of this TEXUS 3 experiment

does not appear to be available.

Key Words: Technological Experiments, Halogen Lamps, Acceleration

Effects, Rocket Despin Failure

Number of Samples: unknown

Sample Materials: unknown

Container Materials: unknown

Experiment/Material Applications:

Unknown
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References/Applicable Publications:

(I) Eyer, A., et al.: Preparation of Crystal Growth Experiments

in Spacelab- Si (FSLP), CdTe (DI) and ZnS (DI). BMFT-FB-W-84-

045, 147 pp. (in German)

(2) Greger, G.: TEXUS and MIKROBA and Their Effectiveness and

Experimental Results. Presented at In Space '87, October 13-14,

1987, Japan Space Utilization Promotion Center (JSUP) .

(identifies rocket failure)

Contact(s):

Prof. Dr. Nitsche or A. Eyer

Kristallographisches Institut

Universitat Freiburg
Hebelstrasse 25

D-7800 Freiburg/i. Br.

Germany
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Principal Investigator(s): Eyer, A. (i), Nitsche, R.

Co-Investigator(s): Unknown

Affiliation(s): (1,2) Kristallographisches Institut,

Freiburg, Germany

(2)

Universit_t

Experiment Origin: Federal Republic of Germany

Mission: TEXUS 3b

Launch Date/Expt. Date: April 1981

Launched From: ESRANGE, Kiruna, Northern Sweden

Payload Type: Sounding Rocket Experiment

Processing Facility: Monoellipsoid mirror furnace

Builder of Processing Facility: Unknown, possibly Messerschmitt-

Boelkow-Blohm (MBB/ERNO), Bremen, Germany

Experiment:

Haloqen Lamp Performance

This TEXUS 3b experiment was the second in a series of investiga-

tions designed by Eyer et al. to evaluate the low-gravity perfor-

mance of a halogen lamp (see Eyer, TEXUS 3).

A description of the specific experimental objectives and equip-

ment setup of the payload could not be located. Documentation

detailing any results of this TEXUS 3b experiment does not appear
to be available.

Key Words: Technological Experiments, Halogen Lamps

Number of Samples: unknown

Sample Materials: unknown
Container Materials: unknown

Experiment/Material Applications:

Unknown

References/Applicable Publications:

No publications could be located which discuss the TEXUS 3b ex-

periment objectives, setup, or results.
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Contact(s):

Prof. Dr. Nitsche or A. Eyer

Kristallographisches Institut

Universit_t Freiburg
Hebelstrasse 25

D-7800 Freiburg/i. Br.

Germany
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Principal Investigator(s): NASDA (i)

Co-Investigator (s) : Unknown

Affiliation(s) : (i) Japan

Experiment Origin: Japan

Mission: TT-500A 12 (Materials Processing Flight #5)

Launch Date/Expt. Date: January 1983

Launched From: Takesaki Launch Site in Tanegashima Island

(Tanegashima Space Center)

Payload Type: Sounding Rocket Experiment

Processing Facility: Halogen Lamp

Builder of Processing Facility: Unknown

Experiment:

Halogen Lamp

This TT-500A sounding rocket experiment was designed to examine

the performance of a halogen lamp under low-gravity conditions.

The specific objective of the experiment was to determine if

"...the halogenous cycle occurred in the microgravity environ-

ment." (i, p. 2) <Note: Reference (2) provides a brief discus-

sion of the halogen cycle.>

No discussion of the experimental setup could be located at this

time.

A brief discussion of the experimental results reported that

"...the halogenous cycle seems to have occurred in the

microgravity environment, because the halogenous tungsten did not

make the black phenomena on the walles [sic] of the halogenous

lamps." (i, p. 2) Reference (i) contains a plot of the halogen

lamp current versus time. It appears that the current was con-

stant (with the exception of a few spikes) at about 3.5 amps from

approximately 105 seconds to approximately 460 seconds after

launch.

No further information concerning this experiment could be lo-
cated at this time.

Key Words: Technological Expeirments, Halogen Lamps, Halogen

Cycle
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Number of Samples: not applicable

Sample Materials: halogen lamp with tungsten filament

(w*)
Container Materials: not applicable

Experlment/Materlal Applications:

"Halogenous lamps are planned to be used as heat sources of an

image furnace." (i, p. 2)

References/Applicable Publications:

(i) Kajiwara, K., Matsuda, T., Shibato, Y., Masuda, T., and

Akimoto, T.: Results of Japanese Space Processing Experiments in

the TT-500A Rocket. 34th International Astronautical Federation,

International Astronautical Congress, Budapest, Hungary, October

10-15, 1983, IAF Paper #83-157, 9 pp. (very short summary; post-
flight)

(2) Ara, T.: Japan Microgravity Project. In 2nd Joint Japan-

Germany-ESA Symposium on Microgravity Research, Tokyo, March 25-

26, 1985, pp. 57-60. (post-flight)

Contact(s):

Dr. Kasuo Sezaki

Technical Development

Ishikawajima-Harima Heavy Industries Co., Ltd.

2-16, 3-Chome, Toyosu, Koto-Ku

Tokyo 135, Japan
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Principal Investigator(s): Bellows, A. H. (i), Feuersanger, A. E.
(2)
Co-Investigator(s): Rogoff, G. L. (3), Rothwell, H. L. (4)

Affiliation(s) : (1-3) GTE Laboratories, Inc., Waltham,

Massachusetts; (4) GTE Lighting Products, Danvers, Massachusetts

Experiment Origin: USA

Mission: STS Launch #10, STS-011 (STS 41-B, Challenger)

Launch Date/Expt. Date: February 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) Canister G-051
Volume of Canister: 5 cubic feet

Location of Canister: STS payload Bay

Primary Developer/Sponsor of G-051: GTE Laboratories, Inc., Wal-

tham, Massachusetts

Processing Facility: Three metal halide arc lamps

Builder of Processing Facility: GTE Laboratories, Inc., Waltham,
Massachusetts

Experiment:

Study of Convection-Free Metal Halide Lamps

"When operated on Earth, gravity induces circulation of the hot

gases in... [high intensity metal halide] arc lamps. That cir-

culation, or convection, affects the electrical and light-

producing properties of the arc. These effects, mixed with

others, are difficult to separate in ground-based experiments.

The observations made while gravity...[is] "switched off" provide

verification of theories of arc behavior, clarify the roles of

convection versus other processes in the arc, and may lead to

potential product improvements that result from altering the in-
fluence of convection.

"In metal halide lamps an arc is established in an inner capsule,

or arc tube, which has metal electrodes protruding through its

ends to pass electrical current through the gas inside. The gas

is mostly mercury vapor with small amounts of sodium and scandium

added to improve the color of the radiated light. During normal

operation convection results in segregation of the various

species, an effect which impacts the color and efficiency of the

light source." (I, p. 17-18)

During this Space Shuttle experiment, the first detailed study of

gravity-free arc operation was realized. The three lamps tested

were of the metal halide type: a mercury lamp with sodium and

scandium additives to whiten the o_herwise bluish color of Hg

lamps. All three were 175 W Metalarc _ brand lamps.
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During the experiment, the lamps were turned on and allowed to

warm up and stabilize (typically 5-8 minutes). They remained on

for a total of 30 minutes. Reportedly, "The arcs were

photographed to record their general structure and, by means of

three bandpass filters, to record the emission from mercury,

sodium and scandium. In addition, a record was made of arc cur-

rent, arc voltage, relative light intensity and arc tube wall

temperature." (i, p. 18) Other experimental observations in-

cluded qualitative records of more subtle phenomena such as

cataphoresis of additive species.

The observed space arc operation was compared to terrestrial arc

operation (and thus data have been obtained with gravity-induced

convection absent as well as present). Reportedly, "Evaluation

of digital f_im data [from the experiment] shows that the 175

watt Metalarc_[brand]...lamp has a significant increase in light

output when convection is removed in the gravity free environ-

ment .... This increase in efficacy is due to a more uniform tem-

perature and radiating species distribution. Operation under DC

power reveals sizable cataphoretic effects that are being studied

further." (i, p. 24)

Other conclusions included:

(i) the short time periods associated with previous free-fall

reduced-gravity experiments were insufficient for examining

steady-state properties of additive lamps,

(2) convection and cataphoresis are of comparable influence on

the operation of a metal halide arc,

(3) when the plasma is operated at a frequency of 60 Hz in space,

the additives are distributed uniformly along the arc axis,

(4) when the plasma is operated at very low frequencies,

cataphoresis is sufficient to effectively remove additives from

the plasma column (i.e., when operated with dc power, metal

halide lamps effectively revert to simple mercury arc lamps).

<Note: Not all of the publications listed in the Applicable

References section below were available to aid in the writing of

this experiment summary.>
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Key Words: Technological Experiments, Metal Halide Arc Lamps, Arc

Behavior, Electric Field, Electrodes, Cataphoresis, Buoyancy-

Driven Convection, Segregation, Gaseous Convection, Buoyancy Ef-

fects Diminished, Thermal Distribution

Number of Samples: three

Sample Materials: metal halide arc lamps with surrounding gaseous

environment consisting of 1 atmosphere of dry nitrogen

Container Materials: not applicable

Experiment/Material Applications:

The results from this study provide valuable insights for lamp

design as well as for analyses of fundamental aspects of lamp arc

operation. (Please refer to the Experiment section (above).)

References/Applicable Publications:

(i) Bellows, A. H. and Feuersanger, A. E.: Arc Discharge Convec-

tion Studies: A Space Shuttle Experiment. In NASA Goddard Space

Flight Center's 1984 Get Away Special Experimenter's Symposium,

NASA CP-2324, August 1-2, 1984, pp. 17-24. (post-flight)

(2) Cargo Systems Manual: GAS Annex for STS-II, JSC-17645 Annex

STS-II, December 2, 1983, pp. 2-3 - 2-4. (short description;

preflight)

(3) Bellows, A. H., Feuersanger, A. E., Rogoff, G. L., and Roth-

well, H. L.: HID [High Intensity Discharge] Convection Studies:

A Space Shuttle Experiment. Illuminating Engineering Society

Meeting (1984).

(4) Bellows, A. H., Feuersanger, A. E., Rogoff, G. L., and Roth-

well, H. L. : Convection and Additive Segregation in High-

Pressure Lamp Arcs: Early Results from a Space Shuttle Experi-

ment. Gaseous Electronics Conf. (1984), Bull. Amer. Phys. Soc.,

Vol. 30, p. 141 (1985). (post-flight)

(5) Rogoff, G. L., Feuersanger, A. E., Bellows, A. H., and Roth-

well, H. L.: Convection and Additive Segregation in Metal-Halide

Lamp Arcs: Results from a Space Shuttle Experiment. Symposium on

Science and Technology of High Temperature Light Sources,

Electrochemical Society Meeting, Toronto, May 1985, Extended

Abstracts, Vol. 85-1, Abstract No. 385, p. 551. (post-flight)
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(6) Bellows, A. H., Feuersanger, A. E., Rogoff, G. L., and Roth-
well, H. L.: HID Convection Studies: A Space Shuttle Experiment.

Lighting, Design and Applications. (to be published) <Note: The
current status of this document is unclear at this time.>

(7) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

(8) STS-II Getaway Special Payload Descriptions.

GSFC, 1984.

NASA News, NASA

(9) Getaway Special (GAS) Payloads (STS-II). In Goddard Space

Flight Center's Engineering Newsletter, Vol. 2, No. 3, April

1984, p. 9. (very short description)

(i0) Input received from Experiment Investigator, September 1989

and July 1993.

Contact(s):

Alfred Bellows

GTE Laboratories, Inc.

40 Sylvan Road

Waltham, MA 02254
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Principal Investlgator(s): Kayser-Threde GmbH (1), Dornier System

GmbH (2)

Co-Investlgator(s): Schmitt, G. (Payload Manager) (3), Klett, R.

(4), Stapelmann, J. (5)

Affiliation(s): (1) Munich, Germany; (2) Friedrichschafen,

Germany; (3,4) Kayser-Threde, Munich, Germany; (5) Dornier System

GmbH, Friedrichschafen, Germany

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #13, STS-017 (STS 41-G, Challenger)

Launch Date/Expt. Date: October 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) Canister G-013

Volume of Canister: 5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-013: Kayser-Threde, Munich/Dornier

System, Friedrichschafen, Germany

Processing Facility: Ellipsoidal mirror and halogen lamp

Builder of Processing Facility: Kayser-Threde, Munich, Germany

Experiment:

Haloqen Lamp Experiment (HALEX)

Mirror heating facilities, which are used for crystal growth and

other material science experiments, are usually configured with

one or two halogen lamps. The lamps provide the heat for the

facility; the mirrors focus the lamp radiation onto the melting

specimen.

The major objectives of this STS-017 Get Away Special experiment

were to (i) examine the low-gravity operation of a halogen lamp

during an extended period (approximately 60 hours) and (2) il-

lustrate the lamp's low-gravity capabilities under conditions

similar to the lamp operating in a furnace configuration.

It was expected that the experiment would illustrate:

"*[The] Radiative behavior of a Halogen lamp during long-term

operation in space

"*[The] Tungsten deposition inside

retransported on to [the] filament

[the] bulb if not

"*[The] Performance of the Halogen Cycle" (2, p. 142)

The experiment hardware was configured with several items

including: (I) a sealed ellipsoidal mirror _hell with vacuum

port, (2) a HALEX 45 W lamp filled with i0 cm _ xenon and admix-
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tures at a pressure of approximately 4.5 bars, (3) two photocells

for light detection, (4) two heat pipes for heat transfer from

the lamp base to an intermediate plate, (5) temperature sensors

at the photocells, lamp base, heat pipes, and intermediate plate,

(6) eight 27 Vdc batteries, (7) a data acquisition system, and

(8) two redundant tape recorders. In preparation for the experi-

ment, a photocell (instead of a sample) was inserted within the

focus of the reflected light.

It appears that the experiment was activated fairly early in the

mission (approximately 34 hours after launch). Soon after the

system "warm-up" was complete (the warm-up took 3 minutes) the

operating setting was initialized.

Approximately 16 hours after the activation of the experiment,

the shuttle SIR-B antenna was deployed. This antenna unex-

pectedly cast a shadow on the GAS payload and inhibited heat

rejection from the canister. <Note: It was not clear why

shadowing of the payload by the SIR-B antenna caused the cited

inhibited heat rejection.> Thus, the payload experienced a sig-

nificant temperature increase. As a result of the increased tem-

perature, the lamp switched off automatically 56 hours after

payload activation, because the upper temperature limit of the

heat pipes had been exceeded. (During these 56 hours "long term

lamp operation" was realized.) One-half hour later, the lamp

automatically switched back on after the temperature had reached

a tolerable level. Approximately 2 hours later, the payload was

automatically switched off "due to a low voltage power cut-off."

(57.9 hours was approximately 10% of the expected life span for

the envisioned space flight lamp.)

Evaluation of the payload performance indicated that:

"* Lamp voltage was constant over the whole experiment period

"* Lamp current was constant

"* Resistance of [the] lamp filament did not change (<0, 1%)

"* Photo signals were constant with respect to the radiation in-

put

"* Lamp base temperature showed that [the] lamp bulb temperature

was as expected

"* Heat pipe temperatures showed [the] proper function...

"* No detectable disturbances of the Halogen cycle [had occurred]

(i.e. no deposit of Tungsten on the bulb)
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"* Surface characteristics of the filament [were] as expected

(microscopic inspection)" (2, pp. 148-149)

It was, therefore, concluded that:

"* The absence of convection (under microgravity) inside the lamp

bulb results in a reduction of convective heat transfer from 5%

to about 2%

"* Due to this reduction the filament temperature rises about 20

K resulting in an... [increase] of light efficiency of about

8,8%" (2, p. 149)

Key Words: Technological Experiments, Halogen Lamps, Halogen

Cycle, Heat Transfer, Buoyancy-Driven Convection, Gaseous Convec-

tion, Thermal Distribution, Thermal Environment More Extreme Than

Predicted, Radiation, Electric Field, Vapor Deposition, Gas Pres-

sure, Heat Pipes, Vacuum

Number of Samples: one

Sample Materials: Ellipsoidal mirror and halogen lamp.

of a sample, a photocell was inserted within the focus.

Container Materials: not applicable

Instead

Experiment/Material Applications:

This investigation was designed to test furnace components that

would later be used in space processing hardware.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS 41-G, JSC-17645 41-G,

September 4, 1984. (very short description; preflight)

(2) Schmitt, G. and Stapelmann, J.: Halogen Lamp Experiment,

HALEX. In NASA Goddard Space Flight Center's 1985 Get Away Spe-

cial Experimenter's Symposium, October 8-9, 1985, pp. 141-149,

NASA CP-2401. (post-flight)

(3) Space Shuttle Mission 41-G NASA Press Kit, October 1984, p.

23. (short description; preflight)
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(4) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report # EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special Canister mission

history)

(5) Input Received from K. Kemmerle, December 1989.

(6) Input Received from G. Schmitt (Kayser-Threde), July 1993.

Contact(s):

Dr. R. Klett, G_nter Schmitt, Dr. K. Kemmerle

Kayser-Threde & Company
8000 M_nchen 70

Wolfratshauser Street 44-48

Germany

G. Siebert

ESA-HQ

8-10, rue Mario-Nikis
F-75738 Paris Cedex 15

France
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Principal Investigator(s): Ollendorf, S. (1)

Co-Investlgator(s): None

Affiliation(s): (1) National Aeronautics and Space Administration

(NASA), Goddard Space Flight Center (GSFC), Greenbelt, Maryland

Experiment Origin: USA

Mission: STS Launch #3, STS-003 (STS OFT-3, Columbia)

Launch Date/Expt. Date: March 1982

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Pallet Instrument: OSS-1 Pallet, STS Payload Bay

Processing Facility: Thermal Canister

Builder of Processing Facility: Grumman Aerospace Corporation,

Bethpage, Long Island, New York

Experiment:

Thermal Canister Experiment (TCE )

The orbiter bay of the Space Shuttle, which can be used to house

several types of experiments and instruments, is subjected to ex-

treme thermal environment conditions, ranging from +I00 °C (full

sun exposure) to -i00 °C (shadow). In an effort to protect ex-

periments from this extreme environment, coatings, insulation,

and/or heaters have been used for thermal control in the bay.

Each time the shuttle flies in a different orbital attitude, ex-

periments are often redesigned to handle the different thermal

environment. If a thermal enclosure was created which provided

protection for instruments from the widely varying environments,

then simpler designs (with limited maintenance between flights)
would be realized.

This space shuttle STS-003 experiment was the first in a series

of investigations designed by Ollendorf and/or McIntosh et al. to

study the performance of heat pipes under low-gravity conditions.

The specific objective of the experiment was to demonstrate tem-

perature stability at various points within a canister while dis-

sipating up to (i) 325 watts in cold orbiter attitudes (bay away

from Sun) and (2) i00 watts in hot conditions (bay towards the

Sun).

The Thermal Canister Experiment (TCE) consisted (in part) of a

rectangular (3 meters high by 1 meter by 1 meter) enclosure con-

structed of aluminum. Thermal control was provided by a system

of longitudinal, fixed conductance heat pipes. The heat pipes

collected thermal energy from (I) internal electric heaters

designed to simulate operating instruments and (2) direct and

reflected sunlight. This heat was then conducted to variable

conductance heat pipes which were connected to radiators mounted

on the upper end of the canister. The radiators radiated the

heat to space.

18-139



"The [fixed conductance] heat pipes are long, narrow, closed

chambers with internal capillary wicking which provides pumping

action. The wick is saturated with a volatile liquid (ammonia)

in equilibrium with its vapor. Heat transport is established by

applying heat at one end (the evaporator) and providing cooling

at the other end (the condenser) with the heat being transferred

at latent heat of vaporization. The liquid is then returned to

the evaporator by capillary forces in the wick.

"The variable conductance heat pipes are more complex than the

fixed conductance type in that they contain a noncondensible gas

(nitrogen) stored in a reservoir at the condenser end of each

pipe. As the temperature of the evaporator end of the pipe

falls, a heating element raises the temperature of the reservoir,

causing the gas to expand into the condenser, thus blocking the

condenser region and effectively stopping heat pipe action. The

length of the condenser rendered inactive depends on the tempera-

ture level along the pipe. Conversely, with increasing

evaporator-end temperature, the gas will recede into the reser-

voir making more active area of the radiators available for heat

rejection to space. The signal for activating the reservoir

heaters is supplied through a feedback loop consisting of a tem-

perature control sensor and either a hardware proportional con-

troller or a computer-driven controller. The sensors are at-
tached to the canister side walls or on simulated instruments lo-

cated in two different zones separated by an insulating barrier.

The simulators are either radiatively or conductively coupled to

the canister walls." (i, p. 405) <Note: The exact meaning of

some of the information in this paragraph was unclear to the

editors.>

Primary and secondary objectives of the experiment were also

detailed. The primary objectives were (i) to maintain a tempera-

ture of 15 +/- 2 °C on all panels of the canister and (2) to

maintain temperature control under (a) all orbiter bay environ-

mental conditions and (b) a range of internal power dissipations.

The secondary objectives were to (i) demonstrate thermal control

from 5 to 25 °C, (2) operate the system in the passive mode with

a variation of +/- 5 °C about some nominal temperature (which de-

pended on the thermal environment), and (3) demonstrate the per-

formance of microprocessor-driven algorithms for thermal control.

Approximately 5 hours after the launch of STS-003, microprocessor

control was initiated to maintain the canister wall temperature

at 15 °C (during initial stabilization of the shuttle).

"Unfortunately the microprocessor experienced reset problems

which precluded the commanding of selected power, temperature,

and control functions. It was decided to bypass the computer and

use a backup hard wire system which utilized a limited number of

relay commands. This enabled the experiment to proceed and the
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majority of primary and secondary objectives to be met. A total

of ii steady-state data points were[sic] achieved during the

seven day mission .... Control was either on the canister

walls...or on the instrument simulators .... " (i, p. 406)

Post-flight, it was reported that, during the space experiment,

the set point variations ranged from 5 to 23 °C with power dis-

sipation of 325 W (cold attitude with shuttle tail toward Sun) to

165 W (hot attitude with payload bay toward Sun). The canister

maintained temperatures to within +/- 2 °C on all panels at any

control point with spatial gradients of 4 °C. (During ground

testing, gradients as high as 8 °C were observed and were at-

tributed to the uneven distribution of fluids in the heat pipes

caused by gravity.)

After switching control to the radiatively coupled instrument

simulator and cycling the power duty, a variation similar to the

one above was maintained. When the simulator was uncontrolled, a

variation of +/- 5 °C with time was noted. Passive thermal con-

trol (control system deactivated) was also demonstrated where the

TCE fell only to -5 °C.

It was also reported that the most important data was achieved

during the transition periods when the shuttle was passing from

one attitude to another. During four transitions, the canister

walls were held at a constant temperature (constant power input)

while the thermal environment changed drastically. Because of

the limited heat rejection capability during the hot attitude,

the TCE could not maintain the desired set-point temperature of
14 °C. However, after changing the set point to 23 _C, thermal

stability was achieved.

"Although the microprocessor continued to reset throughout the

mission due to unknown reasons, there were several intervals

where the control algorithms could be invoked. This occurred at

least four times and demonstrated that the canister and simulated

experiments could be controlled utilizing the software built into

the computer." (i, p. 406)

Data obtained from sensors mounted on the upper and lower seg-
ments of the radiator was used to determine the thermal flux im-

pinging on the canister. It was reported that the average orbi-

tal flux absorbed by the canister was higher than expected. This

was attributed to (i) higher thermal input from the shuttle cargo

bay (cold and moderate attitudes) and (2) uncertainties about the

canister coatings (hot attitude). Because of this higher flux in

the moderate and hot attitudes, the control set-point temperature

had to be adjusted for thermal stability.
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<Note: Performance of the heat pipes system during shuttle re-
entry and landing is also reported in Reference (i).>

It was concluded that the TCE achieved all its primary and most
of its secondary objectives during the mission. The performance
of the heat pipes exceeded ground testing and no heat pipe dryout
was detected. "It is felt that through this flight test, the
thermal canister concept has been proven and it is ready for
operational use to house scientific instruments which will be
flown on future Shuttle missions." (i, p. 409)

Key Words: Technological Experiments, Thermal Control, Heat

Transfer, Heat Pipes, Wicking, Capillary Flow, Capillary Forces,

Surface Tension, Fluid Management, Vaporization, Vapor Transport,

Evaporators, Evaporation, Condensers, Condensation, Heat

Radiators, Liquid/Vapor Interface, Phase Transition, Coated Sur-

faces, Hardware Malfunction

Number of Samples: one thermal system containing an unspecified

quantity of fixed conductance heat pipes

Sample Materials: ammonia, nitrogen

(N,H*, N*)

Container Materials: aluminum heat pipes

(AI*)

Experiment/Material Applications:

See Experiment section (above) and McIntosh, STS-013 (this

chapter).

References/Applicable Publications:

(I) Ollendorf, S.: Thermal Canister Experiment in OSS-I. Journal

of Spacecraft and Rockets, Vol. 21, July-August 1984, pp. 405-

409. (post-flight)

(2) Ollendorf, S. and Butler, D.: Results of Thermal Experiment

Measurements on the Thermal Cannister Experiment and Get Away

Special Enclosure. In Systematics General Corp., The Shuttle En-

vironment Workshop, NASA CR-170496, February 1983, pp. A-275 - A-

287. (post-flight; appears to be viewgraphs only)
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(3) Input received from Experiment Investigator, June 1989 and

August 1993.

(4) Ollendorf, S.: Recent and Planned Developments at the Goddard

Space Flight Center In Thermal Control Technology. In Proceed-

ings of the International Symposium on Thermal Systems for Space

Vehicles, Toulouse, France, October 4-7, 1983, pp. 45-51. (post-

flight)

(5) McIntosh, R. and Ollendorf, S.: A Thermal Canister Experi-

ment for the Space Shuttle. In 3rd International Heat Pipe Con-

ference, Palo Alto, California, May 22-24, 1978, Technical

Papers, AIAA Paper #78-456. (preflight)

(6) Ollendorf, S.: Thermal Canister Experiment on OSS-I. AIAA

21st Aerospace Sciences Meeting, January 10-13, 1983, Reno,

Nevada, AIAA Paper #83-0254. (post-flight)

(7) Harwell, W. and Ollendorf, S. : The Heat Pipe Thermal

Canister. AIAA 15th Thermophysics Conference, Snowmass,

Colorado, July 14-16 1980, AIAA Paper #80-1461. (preflight)

Contact(s):

S. Ollendorf

Mail Code 714

Bldg Ii

Room C3

NASA Goddard Space Flight Center

Greenbelt, MD 20771
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Principal Investigator(s): Koch, H. (i), Kreeb, H. (2), Savage,

c. (3)
Co-lnvestigator(s): None

Affiliation(s): (1,2,3) Dornier Systems, GmbH, Friedrichshafen,

Germany

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

<Note: An Experiment Investigator indicated that this payload

also flew on "STS #ii." Although the investigator cited two

references which may have detailed the results of the STS #ii

flight, these papers could not be obtained prior to the publica-

tion of this experiment summary ( see Note in

"References/Applicable Publications" below) .>

Launch Date/Expt. Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Payload Bay, STS Deployed Satellite, DFVLR

SPAS-01 Platform (SPAS was a small experiment carrier initially

configured in the STS payload bay but later deployed into orbit

by the Canadian Remote Manipulator Arm. The carrier was

retrieved prior to the end of the mission.)

Processing Facility: Constant-conductance heat pipes, variable-

conductance heat pipes (VCHP), and heat-pipe diodes

Builder of Processing Facility: Various, see Experiment section
below

Experiment:

Heat Pipe Experiment on SPAS

Generally, all heat pipes operate on the same principle: the

working fluid evaporates at the heat source (evaporator section)

and the latent heat is transferred in the vapor phase where it

recondenses at a heat sink (condenser). The condensate is

returned to the evaporator (via capillary forces) through a

porous wick material. The heat transport capacity of a heat pipe

is determined by the effectiveness of the wick material. This

effectiveness is greatly influenced by gravity. On Earth, the

liquid excess needed to saturate the wick collects in the bottom

of the pipe. In space, however, the excess liquid will collect

elsewhere and may affect the performance of the heat pipe.

The objective of this STS-007 experiment was to study the low-

gravity performance of three different heat pipe systems con-

figured on the Shuttle Pallet Satellite SPAS-01 (see Reference

(3) for a description of SPAS-01): (i) constant-conductance heat

pipes, (2) variable-conductance heat pipes, and (3) heat pipe
diodes.
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A document published prior to the launch of STS-007 (Reference

(2)) reported that nine heat pipe experiments were to be per-

formed during the SPAS-01 mission. Two of the experiments in-

volved constant-conductance artery heat pipes (IAI and IA2), four

involved gas-controlled variable-conductance heat pipe (VCHP)

radiators (DS RI, SAI, DS R2, and DS R3), two involved liquid

trap diodes (IDI and DS DI), and one involved a gas diode (DS

D2). This preflight document described the expected experimental

setup and goals of each of the nine investigations. A summary of

each (as provided by Reference (2)) is presented in the following

paragraphs.

IAI and IA2: Each apparatus was provided by IKE/ESTEC and had

"...stainless-steel artery designs...capable of transporting

about 150 W when horizontal. Heat is supplied to the evaporators

according to a pre-programmed power profile, allowing the load to

be increased progressively from zero to 150 W. Should the heat

transport limit of the pipe be lower than 150 W, the resulting

dry-out and rapid rise in evaporator temperature is detected by

the experiment control and data system and the unit is switched

off. The heat transported by the pipes is absorbed by phase-

change-material thermal capacitors (PCM cells) containing

eicosane wax and attached to the condenser sections. A cooling

time of several hours is provided for the wax to refreeze between

experiment cycles. The experiments are each instrumented with

eight thermistors to provide temperature data for control and for

transmission to the ground." (2, p. 78) The only difference be-

tween the IAI and IA2 experiments was to be the shorter

evaporator length of the IA2 apparatus.

DS R1 and SAI: Each of these experiments was to contain a gas-

controlled, variable-conductance heat pipe with an electrically

heated evaporator section. Cooling of the condenser section was

to be accomplished using a space-viewing radiator. The DS R1

heat pipe (designed by Dornier Systems) was comprised of extruded

aluminum with an axial-groove wick structure. The pipe was to be

equipped with eleven thermistors for control and monitoring. The

wick structure was to be attached to a slotted radiator. During

the mission, the heat load for the DS R1 experiment was to be

stepped up to 20 W and then stepped back down. Each step was to

be held for several hours allowing an assessment of the (i) ex-

ternal environment effects and (2) radiator and VCHP performance.

The SA 1 heat pipe (supplied by Societe Anonyme Belge de Con-

structions Aeronautiques (Sabca), Brussels) was constructed of

stainless steel with a simple artery wick structure. The gas

reservoir was to be cooled by direct radiation to space. During

the mission, the heat load for the SA 1 experiment was to be

stepped more often and with smaller steps than the DS R1 experi-

ment. This would allow exploration of the heat transport
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capacity and VCHP control function. The SA 1 heat pipe was to be
equipped with twelve control and monitoring thermistors.

DS R2 and DS R3: The main task of these VCHP radiators was to
remove heat from the experiment-support plate (ESP) which was to
act as a heat sink for the DS D1 and DS D2 diodes, the control
and data system, and the IAI and IA2 PCM cells. The DS R2 ap-
paratus (provided by Dornier Systems) consisted of one gas-
controlled VCHP and the DS R3 (also provided by Dornier Systems)
consisted of two gas-controlled VCHP's. All three VCHP's were
similar in design to that of DS RI. The evaporator sections were
to be directly attached to the ESP (heat source). The heat pipes
were to control the ESP temperature to within a few degrees of 30
°C.

DS DI, DS D2, and IDI: All three of these experiments used heat-
pipe diodes. Heat-pipe diodes are one-way heat pipes which use
blockage techniques during the reverse or shut-down mode. These
blockage techniques are either (i) non-condensible gases or
excess liquid used to block the vapor space or (2) liquid traps
into which the working fluid condenses. DS D1 (provided by Dor-
nier Systems) was a liquid-trap diode experiment. Two identical
diodes were to be mounted to a common plate at their evaporator
(liquid trap) ends. The plate was to be equipped with a heater
(forward mode heater). The free ends of the diodes were to be
mounted to a PCM cell and the reverse-mode heater block, respec-
tively. This would allow one diode to demonstrate forward mode
operation with the heat transported to and absorbed by the PCM
cell. The other diode demonstrated reverse mode operation. Ten
thermistors were to monitor and control temperatures. IDI
(provided by IKE/ESTEC) was also a liquid-trap diode experiment
which was designed to investigate the transient response of the
diode to different condenser heat loads. This heat pipe was com-
prised of stainless steel and had a design based on that of the
IAI and IA2 heat pipes. Two heaters, one at the trap and the
other located at the evaporator, were to be sequenced to estab-
lish a forward mode of operation. After switching off the two

heaters, a heater at the condenser would be activated to initiate

the shutdown. The evaporator and trap were to be cooled with a

small radiator (with radiation to space). The IDI experiment was

to be equipped with ten thermistors. The DS D2 experiment

(provided by Dornier Systems) used a gas diode heat pipe which

basically consisted of a VCHP with a heater located at each end.

In forward-mode operation, the gas is located at the condenser

end in a reservoir. During reverse-mode operation, the gas is

swept to the evaporator end and blocks the vapor space. This ex-

periment was to use eight thermistors for performance monitoring.

<Note: Reference (2) contains a description of the expected con-

trol and data systems.>
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No documents published after the STS-007 flight could be located
which described (i) the actual flight experimental setup and pro-
cedure, or (2) the post-flight results. Although an Experiment
Investigator indicated that two papers on this experiment were
published, these documents could not be attained prior to the
publication of this summary (see note in the References section
below).

The Experiment Investigator briefly reported that: "Results as
predicted with the exception of the Sabca heat pipes." (4)

<Note: It appears from the Investigator response that the heat
pipes employed during this experiment were later flown on the
ERS-I, ERS-2, and L-SAT (Olympus) spacecraft.>

Key Words: Technological Experiments, Heat Pipes, Thermal Con-

trol, Heat Transfer, Wicking, Porous Material, Capillary Flow,

Capillary Forces, Surface Tension, Fluid Management, Vaporiza-

tion, Vapor Transport, Evaporators, Evaporation, Condensers, Con-

densation, Heat Radiators, Phase Transition, Free-Flying Satel-

lite

Number of Samples: Unknown; preflight documents detailed nine

heat pipes.

Sample Materials: working fluids: NH3, Freon 21, Freon ii.
(N'H*)

Container Materials: IAI, IA2, SAI, and IDI: stainless steel; DS

RI: aluminum; DS R2 and DS R3: unknown, possibly aluminum; DS DI:

unknown; DS D2: unknown

(AI*}

Experiment/Material Applications:
Satellites such as the Marecs maritime communications satellite

currently use heat pipes for thermal control. Heat pipes are en-

visioned for used on several vehicles including the Franco-German

TV-Sat and on the European Space Agency's L-SAT (Olympus) and

ERS-I spacecraft.
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References/Appllcable Publications:

(i) Koch, H., Kreeb, H., and Savage, C.: The Heat Pipe Experi-

ment on SPAS 01. Luft-und Raumfahrt, Vol. 5, 4th Quarter, 1984,

pp. 133, 134, 136-141. (in German)

(2) Savage, C. J.: A European Heat-Pipe Experiment on the Second

Flight of Space-Shuttle 'Challenger.' In ESA Bulletin, No. 35,

August 1983, pp. 76-81. (preflight)

(3) Davidts, D.: The Shuttle Pallet Satellite System. Journal of

the Astronautical Sciences, Vol. 28, No. 3, July-September 1980,

pp. 283-298. (preflight, SPAS description)

(4) Input received from Experiment Investigator, July 1993.

<Note: The Experiment Investigator indicated that two additional

papers were given at the International Heat Pipe Conference, Tsu

Kuba, Japan, 1985. However, the editors of this document could

not obtain these papers prior to the publication of this sum-

mary.>

Contact(s]:

H. Koch, H. Kreeb, or C. Savage

Dornier Systems GmbH

P.O. Box 1420

D-7990

Friedrichshafen

Germany
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Principal Investigator(s): Rankin, J. G. (i)

Co-Investigator(s}: Project Engineer: Alario, J. P. (2)

Affiliation(s): (i) National Aeronautics and Space Administration

(NASA), Johnson Space Center (JSC), Houston, Texas; (2) Grumman

Space Systems, Grumman Aerospace Corporation, Bethpage, New York

Experiment Origin: USA

Mission: STS Launch #8, STS-008 (STS 31-D, Challenger)

Launch Date/Expt Date: August 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Payload Bay

Processing Facility: Proof of concept heat pipe radiator

Builder of Processing Facility: Grumman Space Systems, Bethpage,

New York

Experiment:

Heat Pipe Radiator

This STS-008 experiment was the first in a series of investiga-

tions designed by Rankin et al. to study the performance of a

high-capacity, monogroove heat pipe radiator prototype under low-

gravity conditions.

For several years prior to the experiment, NASA-Johnson Space

Center (NASA-JSC) had investigated heat pipe technology for use

in space radiator systems. The ultimate goal was to develop a

simple but highly reliable (and survivable) space radiator system

suitable for long-duration missions. One of the concepts which

was developed was called the Space Constructible Radiator (SCR).

Under the SCR program, the high-capacity monogroove or dual-

passage heat pipe was developed. Although full size low-gravity

testing was planned, the cancellation of the TDRS-B payload on

the STS-008 mission provided an earlier opportunity for a scaled-

down version of the system. Therefore, in less than four months,

a flight experiment was conceived, designed, fabricated, tested,

and integrated into shuttle cargo bay. The specific objective of

this flight experiment was to demonstrate the low-gravity perfor-

mance of a monogroove heat pipe.

The operating fluid for the STS-008 heat pipe system was Freon-

21, although the monogroove heat pipe system was developed for

ammonia. "...Freon-21 was used in the STS-8 hardware due to its

five times lower vapor pressure and the fact that an early,

lower-strength version of the heat pipe extrusion was being

used." (i, p. 2) (See References (i) and/or (5) for details of

@re-flight pipe burst test results.)
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<Note: Not all of the Applicable Publications listed below could

be located prior to the publication of this experiment summary.

The following brief description of the employed heat pipe system

was obtained from References (i) and (5).> The heat pipe radiator

experiment apparatus consisted of a single U-shaped monogroove

heat pipe which was bonded to a radiating fin. Heat input was

provided by two thermostatically protected electric heaters (30

watts and 70 watts) which were attached to the underside

evaporator flanges. Heat rejection was achieved through a

double-sided aluminum radiator (3.1 mm thick) bonded to the con-

denser flange with conductive epoxy.

<Note: Although Reference (5) provided a figure of the STS-008

heat pipe configuration (see Figure 4), a more detailed (written)

description of the heat pipe was not provided in References (i)

and (5). From the provided figure and a description of the

monogroove heat pipe design found in a reference related to

Rankin's later STS-29 heat pipe experiment, it appears that the

STS-008 heat pipe used no moving parts, but rather works through

the convection currents of the working liquid:

Electric heaters warm one end of the radiator, turning the

working liquid into vapor which transports the heat through the

length of the pipe, where fin radiates it into space. The fin is

cooled by the space environment, and the working fluid is, in

turn, condensed and recirculated.

"Two small pipes run through the center of the radiator down its

length, branching out like the tines of a fork at the end that

receives heat, called the evaporator. The top pipe holds the

vaporized ammonia; the bottom holds liquid ammonia. In the

evaporator portion, a fine wire mesh wick, which works along the

sample principles as the wick of an oil lamp, pulls the liquid

ammonia from one pipe to the other, where it vaporizes. Small

grooves allow the condensed ammonia to drop back to the bottom

pipe." (7, p. 13)>

STS-008 documentation reported that "Since time precluded using

shuttle systems for data acquisition, calibrated temperature-

sensitive liquid crystal films which change color were used to

monitor temperatures in the evaporator and condenser sections.

Five different types of films were used, providing a temperature

sensitivity range of 20 to 45 °C. Each film was capable of a 5

°C range with color variation of blue to red .... [R]eal-time

visual observations were made through the aft flight deck windows

and 35 mm photographs were taken by the astronauts." (i, p. 2)

(See References (I) and/or (5) for descriptions of liquid crystal

films.) As a backup, seven temperature indicating decals

(Tempilabel), which permanently change color in response to a

particular temperature, were used to establish a record of the
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evaporator temperature.

During the STS-008 experiment, the space shuttle operated with
essentially an Earth-oriented cargo bay ("+ ZLV orbit").
Electrical power (70 W) was applied to the system approximately
24 minutes after orbital dawn. Color changes in the liquid crys-

tal films were observed within 25 minutes (see References (i)

and/or (5)). The color pattern indicated that a temperature dif-

ference of approximately 5 °C existed between the evaporator and

condenser sections with uniform temperatures along each section.

(The 5 °C temperature difference had been predicted by thermal

modeling.)

It was reported that the experiment operated in a stable mode for

2 hours and 35 minutes at a single 70 W power setting. After

this time, the system was turned off. Post-flight examination of

the Tempilabel decals revealed a maximum temperature of 49 °C for

the evaporator. This result confirmed proper operation of the

heat pipe for the entire experiment.

It was concluded that this experiment demonstrated the successful

operation of the monogroove heat pipe radiator under low-gravity

conditions. It was also reported that no priming or operating

problems were observed at any time during the experiment.

Key Words: Technological Experiments, Heat Pipes, Thermal Con-

trol, Heat Transfer, Heat Radiators, Vaporization, Gas Pressure,

Vapor Transport, Evaporators, Evaporation, Condensers, Condensa-

tion, Phase Transition, Fluid Management, Wicking, Capillary

Flow, Capillary Forces, Convection, Liquid/Vapor Interface, Liq-

uid Crystals

Number of Samples: one heat pipe

Sample Materials: working fluid: Freon-21

Container Materials: heat pipe: unknown; radiator: aluminum

Experiment/Material Applications:

See Experiment summary (above).
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References/Applicable Publications:

(i) Alario, J. P.: Monogrove [sic] Heat Pipe Radiator Shuttle

Flight Experiment: Design, Analysis and Testing. Fourteenth In-

tersociety Conference on Environmental Systems, San Diego,

California, July 16-19, 1984. (post-flight report)

(2) Alario, J., Haslett, R. and Kosson, R.: The Monogroove High

Performance Heat Pipe. AIAA Paper #81-1156.

(3) Alario, J., Brown, R., and Kosson, R.: Monogroove Heat Pipe

Development for Space Constructible Radiator System. AIAA Paper

#83-1431.

(4) Alario, J. et al.: Space Constructible Radiator Prototype

Test Program. AIAA Paper #84-1793. (ground testing)

(5) Rankin, J. G.: Integration and Flight Demonstration of a

High Capacity Monogroove Heat Pipe. AIAA Paper #84-1716. (post-

flight report)

(6) Input received from Project Engineer, J. P. Alario, August

1993.

(7) NASA Space Shuttle Mission STS-29 Press Kit, March 1989, pp.

13-15. (pre-STS 29)

Contact(s):

Gary Rankin
2101 NASA Road 1

EC2

Houston, TX 77058

Joseph P. Alario

Grumman Space Systems

Grumman Aerospace Corporation

Bethpage, NY 11714-3588
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Principal Investigator(s): Rankin, J. G. (i)

Co-Investigator(s): Unknown

Affiliation(s): (1) National Aeronautics and Space Administration

(NASA), Johnson Space Center (JSC), Houston, Texas

Experiment Origin: USA

Mission: STS Launch #28, STS-29 (Discovery)

Launch Date/Expt Date: March 1989

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Payload Bay/Starboard Sill

Processing Facility: Space Station Heat Pipe Advanced Radiator

Element (SHARE)

Builder of Processing Facility: Unknown

Experiment:

Space Station Heat Pipe Advanced Radiator Element (SHARE)

<Note: Information for this Experiment summary was obtained from

a NASA press release which was published prior to the launch of

STS-29. No other publications which discussed the objectives,

experimental setup, or results could be located at this time.>

This STS-029 experiment was the second in a series of investiga-

tions designed by Rankin et al. to study the performance of a

high-capacity, monogroove heat pipe radiator concept under low-

gravity conditions (see Rankin STS-008). The specific objective

of the experiment was to test a potential, heat-pipe cooling sys-

tem for the Space Station Freedom.

"The heat pipe method uses no moving parts and works through the

convection currents of ammonia. Three electric heaters will warm

one end of the 51-foot long SHARE [Space Station Heat Pipe Ad-

vanced Radiator Element]. The heaters turn liquid ammonia into

vapor which transports the heat through the length of the pipe,

where a foot-wide aluminum fin radiates it into space. The fin

is cooled by the space environment, and the ammonia is, in turn,

condensed and recirculated.

"Two small pipes run through the center of the radiator down its

length, branching out like the tines of a fork at the end that

receives heat, called the evaporator. The top pipe holds the

vaporized ammonia; the bottom holds liquid ammonia. In the

evaporator portion, a fine wire mesh wick, which works along the

sample principles as the wick of an oil lamp, pulls the liquid

ammonia from one pipe to the other, where it vaporizes. Small

grooves allow the condensed ammonia to drop back to the bottom

pipe.
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"The radiator for SHARE weighs about 135 pounds, but with its

support pedestals, support beam, heaters and instrumentation

package, the total experiment weighs about 650 pounds.

"Crew members will switch the heaters on by using controls lo-

cated on the aft flight deck. Each of the experiments two 500-

watt heaters and single 1000-watt heater is controlled in-

dividually and will be switched on in turn, applying heat that

will increase steadily in 500-watt increments up to a maximum of

2000 watts.

"The experiment will be activated for two complete orbits in two

different attitudes, the first with the payload bay toward Earth

and the second with the orbiter's tail toward the Sun. The

heaters go through a complete 500-watt to 2000-watt cycle for

each activation. This will simulate the heat that needs to be

dissipated from the Space Station, and the two attitudes will

provide data on the heat pipe's operation in different thermal

environments.

"Other information may be obtained during STS-29 if time permits,

including a test of the heat pipe's minimum operating tempera-

ture, thought to be about minus 20 degrees Fahrenheit, and a test

of its ability to recover from acceleration." (2, p. 13)

Key Words: Technological Experiments, Heat Pipes, Thermal Con-

trol, Heat Transfer, Heat Radiators, Vaporization, Vapor

Transport, Evaporators, Evaporation, Condensers, Condensation,

Phase Transition, Fluid Management, Wicking, Capillary Flow,

Capillary Forces, Convection, Liquid/Vapor Interface, Surface

Tension, Acceleration Effects

Number of Samples: one experimental setup

Sample Materials: working fluid: ammonia

(N,H*)

Container Materials: heat pipe: unknown; radiator: aluminum

Experiment/Material Applications:

See Rankin, STS-008.
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References/Applicable Publications:

(i) Hartsfield, J.: SHARE: Ammonia-Powered "Air Conditioner"

Gets Flight Test on STS-29. NASA Activities, March 1989, Vol.

20, No. 3, p. 13. (preflight)

(2) NASA Space Shuttle Mission STS-29 Press Kit, March 1989, pp.

13-15. (preflight)

Contact(s):

Gary Rankin
2101 NASA Road 1

EC2

Houston, TX 77058

18-155



Principal Investigator(s): Walden, V. (1)

Co-Investigator(s): Megill, L. R. (Payload Manager) (2), Utah

Section of American Institute of Aeronautics and Astronautics

(Purchaser and Donor) (3)

Affiliation(s) t (1) During STS-011: Utah State University, Logan,

Utah, Currently: University of Washington, Seattle, Washington;

(2) During STS-011: Utah State University Faculty, Logan, Utah,

Currently: ARME Enterprises, Hyrum, Utah; (3) Utah

Experiment Origin: USA

Mission: STS Launch #10, STS-011 (STS 41-B, Challenger)

Launoh Date/Expt. Date: February 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment

NASA Get Away Special (GAS) canister G-008

Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of this experiment within G-008: Utah

State University, Logan, Utah

Processing Faaillty: Heat Pipe

Builder of Processing Facility: Utah State University, Logan,

Utah

Experiment:

Heat Pipe Fluid Flow Experiment, #i

This experiment was the first in a series of investigations

designed by Walden et al. to study heat pipe fluid flow. The ex-

periment was one of four investigations housed within the G-008

Get Away Special canister during STS-011. Two other experiments

(of the four) were applicable to this data base (see Alford, STS-

011 (Chapter 18); Gerpheide, STS-011 (Chapter 16)).

Reportedly, the long-term objective of the experiment was to

determine if the fluid dynamics of a heat pipe fluid/wicking sys-

tem could be (later) used to perform electrophoretic separations.

The experiment was not configured to achieve electrophoresis but

rather was designed to illustrate the properties of a heat pipe

working fluid as it flowed through the wicking material.

The experimental apparatus included a 12-inch long heat pipe con-

structed of 1-inch diameter glass tubing. The working fluid of

the pipe was water and the wicking material was chromatography

paper. The water was dyed such that heat pipe operation could be

verified visually.

<Note: No further information concerning the experimental setup

or the expected inflight operational scenario could be located at
this time.>
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The Principal Investigator reported that the heat pipe fluid flow

experiment failed during this mission because the apparatus was

improperly reset during ground testing. As a result of this im-

proper setting, only 6 minutes of data were gathered. It was

believed that during the time this data were gathered, the ex-

periment was not in orbit. Therefore, it was reported that no
useful data were obtained.

Reference 6 further reported that "A battery pack latching relay

stuck closed prelaunch, resulting in battery drain before

launch." (6, p. 29)

Key Words: Technological Experiments, Heat Pipes, Wicking, Capil-

lary Flow, Capillary Forces, Surface Tension, Liquid Transfer,

Separation of Components, Electrophoresis, Battery Drain

Number of Samples: one

Sample Materials: Working fluid: dyed water; wicking material:

chromatography paper

Container Materials: The heat pipe was made from glass tubing.

Experiment/Material Applications:

Reportedly, this preliminary experiment was designed to inves-

tigate the possibility of using heat pipe technology to perform

electrophoresis. Low-gravity electrophoretic processing is ex-

pected to yield separated samples of higher quality than similar

separations obtained on Earth.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS-II, JSC-17645 Annex

STS-II, December 2, 1983. (mentions G-008 but does not detail

this experiment; preflight)

(2) Input received from Principal Investigator, V. Walden, August
1989.

(3) Getaway Special Payloads (STS-II). In Goddard Space Flight

Center's Engineering Newsletter, Vol. 2, No. 3, April 1984, Pub-

lished by the Engineering Directorate, pp. 8-9. (very short

description)
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(4) STS-II Getaway Special Payload Descriptions, NASA News, NASA

GSFC, 1984. (post-flight)

(5) STS 41-B Tenth Space Shuttle Mission, Press Kit,

1984, p. 28. (brief mention of experiment; preflight)

February

(6) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

(7) STS-II GAS Payloads. NASA Goddard Space Flight Center En-

gineering Newsletter, April 1984.

Contact(s):

Yon Walden

University of Washington

AK-50

Seattle, WA 98195

Rex Megill

ARME Enterprises

96 South i00 West

Hyrum, UT 84319
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Principal Investigator(s): Walden, V. (I)

Co-Investigator(s}: Megill, L. R. (Payload Manager) (2), Utah

State University/Jensen, B. C. (Contributor/Customer) (3)

Affiliatlon(s}: (1) Graduated June 1984 from Utah State Univer-

sity, Logan, Utah, During STS-017: Quantic Industries, San Car-

los, California, Currently: University of Washington, Seattle,

Washington; (2) During STS-017: Utah State University Faculty,

Logan, Utah, Currently: ARME Enterprises, Hyrum Utah; (3) Logan,

Utah

Experiment Origin: USA

Mission: STS Launch #13, STS-017 (STS 41-G, Challenger)

Launch Date/Expt. Date: October 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment

NASA Get Away Special (GAS) canister G-518
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/sponsor of G-518: Utah State University, Logan,

Utah

Processing Facility: Heat Pipe

Builder of Processing Facility: Unknown, possibly Utah State

University, Logan, Utah

Experiment:

Heat Pipe Fluid Flow Experiment, #2

This experiment was the second in a series of investigations

designed by Walden et al. to study heat pipe fluid flow (see Wal-

den, STS-011). The experiment was one of four investigations

housed within the G-518 Get Away Special canister during STS-017.

Three other experiments (of the four) were applicable to this

data base (see Kitaura, STS-017 (Chapter 2); Thomas, S., STS-017

(Chapter 12); "Solder Flux Separation," STS-017 (Principal Inves-

tigator unknown (this chapter))).

The specific objective of this experiment was to determine if the

fluid dynamics of a heat pipe fluid/wicking system could be used

to perform electrophoretic separations. The experiment was not

configured to achieve electrophoresis but was designed to il-

lustrate the properties of a heat pipe working-fluid as it flowed

through the wicking material.

The experimental apparatus included a 12-inch long heat pipe con-

structed of 1-inch diameter glass tubing. The working fluid of

the pipe was water; the wicking material was chromatography

paper. The water was dyed such that heat pipe operation could be

verified visually.
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A document released prior to the launch of STS-017 (Reference

(2)) further detailed the expected experimental setup and in-

flight operation of the fluid flow system. Reportedly, the glass

tube heat pipe was to be partially evacuated and configured with

(i) a heater at one end and (2) a paraffin heat sink at the other

end. During the experiment, (i) the heater was to vaporize a

small amount of water within the tube, (2) the vapor was to

recondense at the heat sink, and (3) the recondensed water was

to return to the hot end of the pipe via the wicking material.

Although it was noted that the system was expected to separate

the dye from the water, further discussion of this separation was

not provided.

The Principal Investigator reported that during the mission, the

experiment operated through to completion but the data were not

usable. It was determined that either the experiment batteries

were too low to properly record the data, or a software error ex-

isted in the computer controller.

No further information concerning this experiment could be lo-

cated at this time.

Key Words: Technological Experiments, Heat Pipes, Wicking,

Capillary Flow, Capillary Forces, Surface Tension, Liquid Trans-

fer, Phase Transition, Vaporization, Condensation, Liquid/Vapor

Interface, Fluid Management, Separation of Components,

Electrophoresis, Battery Drain, Processing Difficulties

Number of Samples: one

Sample Materials: Working fluid: dyed water; wicking material:

chromatography paper

Container Materials: The heat pipe was made from glass tubing.

Experiment/Material Applications:

Please see Walden, STS-011.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS 41-G. JSC-17645 41-

G, September 4, 1984. (short description; preflight)
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(2) NASA Space Shuttle Mission 41-G Press Kit, October 1984, pp.

24-25. (preflight)

(3) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(4) G-518 Payload Accommodations Requirements, NASA Goddard Space

Flight Center, March 20, 1984.

(5) Press Release for G-518, Utah State University, Logan, Utah,

1984.

(6) Input received from Principal Investigator V. Walden, August

1989.

(7) Letter from V. Walden to L. Rex Megill dated December 3,

1984.

Contact(s):

Von Walden

University of Washington

AK-50

Seattle, WA 98195

Rex Megill

ARME Enterprises

96 South I00 West

Hyrum, UT 84319

Bartell C. Jensen

Vice President

Research Center for Atmospheric and Space Sciences

Utah State University

Logan, UT 84322
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Prlncipal Investigator(s): Grote, M. (i), Calhoun, L. D. II (2)

Co-lnvestigator(s): None

Affiliation(s): (1,2) McDonnell Douglas Astronautics Company, St.

Louis, Missouri

Experiment Origin: USA

Mission: Launched: STS Launch #Ii, STS-013 (STS 41-C,

Challenger) ; Returned: STS-032 (Columbia)

Launch Date/Expt. Date: April 1984. The experiment, which was on

the LDEF free-flying facility, orbited the Earth for 6 years and

then was returned via the space shuttle in January 1990.

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Experiment within the Long Duration Exposure

Facility (LDEF) (a STS Deployed Satellite)

Processing Facility: Cascaded Variable-Conductance Heat Pipe

(CVCHP)

Builder of Processing Facility: McDonnell Douglas Astronautics

Company, St. Louis, Missouri

Experiment:

Cascade Variable-Conductance Heat Pipe (LDEF A0076)

The Long Duration Exposure Facility (LDEF) was a free-flying

cylindrical structure (30 ft. long and 14 ft. in diameter) placed

in orbit by the U.S. space shuttle at an altitude of 257 nautical

miles and an inclination of 28.5 degrees. The structure con-

tained 57 science and technology experiments located in trays

mounted on the exterior of the structure. LDEF was to be

retrieved after approximately 9 months. However, the structure

remained in orbit for nearly 6 years because U.S. shuttle flights

were delayed following the loss of the space shuttle Challenger.

LDEF was eventually retrieved at an altitude of approximately 180

nautical miles.

This LDEF experiment was designed to examine the low-gravity per-

formance of a cascaded variable-conductance heat pipe (CVCHP).

The specific objective of the experiment was to determine if such

a heat pipe configuration could provide precise temperature con-

trol of future space vehicles (within +/- 0.3 °C). These space

vehicles are expected to (I) operate for extended periods of time

and (2) have widely varying power inputs.

The heat pipe configuration used two series-connected dry reser-

voir VCHPS. Ammonia was used as the working fluid and nitrogen

as the control gas.

In a dry gas reservoir, the control gas (noncondensible) is iso-

lated from the ammonia in the heat pipe. The reservoir is ther-

mally connected to the evaporator to maintain (i) the gas above
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the evaporator temperature and (2) the reservoir at a constant

temperature.

Reportedly, "In initial [theoretical] analysis, a single VCHP

could not maintain a precise temperature control in the widely

ranging heat loads and environments [of space], but could easily

maintain a control of +/-3.0 °C. [Thus] a second, series con-

nected (i.e. cascaded) VCHP was added [to the LDEF experiment

configuration] to provide precise temperature control. Using the

+/-3.0 °C control of the 'coarse' control VCHP as the sink tem-

perature, the 'fine' control VCHP could provide +/-0.3 °C control

without requiring an excessive reservoir size." (3, p. i)

In order for the dry reservoir concept to be successful, the am-

monia vapor had to be kept out of the noncondensible gas reser-

voir. If ammonia entered the reservoir, a rise in the tempera-

ture set point would occur. A long capillary tube was located

between the heat pipe and reservoir to prevent diffusion of the

ammonia into the reservoir. Ground-based, short-duration thermal

vacuum tests demonstrated that this concept was successful.

However, a long-term space test was required to determine the

drift in temperature set point caused by diffusion.

The CVCHP did not require electrical power to operate but did

require a heat throughput (e.g., equipment waste heat). On LDEF,

this was accomplished by using (i) a black chrome solar collector

for heat input (simulating for example, an equipment heat load)

and (2) a silver/teflon radiator for heat rejection. The experi-

ment was located on the leading edge (row 9) of LDEF, which

provided a widely varying thermal environment (full solar to full

shade) every orbit. Six thermistors provided thermal data, which

was recorded in the data system of an adjacent LDEF experiment.

Data were collected about every 2 hours for approximately 45 days

(until battery drain). (References (4) and (5) provide detailed

descriptions of the heat pipe.)

During the initial period of LDEF deployment (approximately 6

days), LDEF was in a low angle orbit and, therefore, was sub-

jected to widely varying environmental conditions. During this

time, the thermal data indicated that both VCHPs maintained an

almost constant temperature. The thermal data from the fine con-

trol VCHP indicated a slight temperature variation in response to

the varying solar collector input. The thermal data from the

coarse control VCHP indicated a nearly constant temperature with

a minimum temperature recorded between days i0 and 20. This cor-

responded to the period of minimum thermal environmental condi-

tions. The coarse control VCHP reservoir showed very little

change throughout the mission.
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Reportedly, "One of the key goals of the flight experiment was to

determine if there would be a long term upward drift due to dif-

fusion of ammonia into the reservoir, but the data indicated no

major temperature changes. Both VCHPs reached their minimum tem-

peratures between day I0 and 20 and then rose slightly through

day 45, but it was impossible to determine if this very slight

increase was due to a very small amount of diffusion or due to

the warmer environment .... The very successful operation during

the 45 days of data recording showed that the capillary tube did

a very good job of preventing ammonia from entering the reser-

voir, but a significant amount of additional data would be

required to extrapolate to see if there exists a small tempera-

ture setpoint rise over an extended mission." (3, p. 6)

It was concluded that the CVCHP demonstrated successful tempera-

ture control of +/- 0.3 °C over the widely varying environment

during the LDEF mission. "The flight data indicated that only

one VCHP was required to maintain precise temperature control.

Post-flight tests indicated upward shifts in both VCHP set

points, but it was uncertain whether these shifts were caused by

on-orbit diffusion or post-flight activities. Even if all the

shift accrued in orbit, the average drift rate was less than I °C

per year." (3, p. 9)

<Note: Reference (4) also reported results from the erosion of

the external surfaces caused by the orbital environment (e.g.,

atomic oxygen).>

Key Words: Technological Experiments, Heat Pipes, Thermal Con-

trol, Solar Heating, Evaporators, Capillary Flow, Capillary

Forces, Heat Transfer, Heat Radiators, Diffusion, Free-Flying
Satellite

Number of Samples: one cascade variable conductance heat pipe

setup

Sample Materials: Working fluid: ammonia; control gas: nitrogen

(N,H*, N*)
Container Materials: unknown
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Experiment/Material Applications :

"Precision temperature control which requires no electrical power

for operation can be beneficial in a number of spacecraft ap-

plications for controlling temperature sensitive components." (3,

p. 1)

References/Applicable Publications:

(i) Grote, M. G. and Calhoun II, L. D. : Cascade Variable-

Conductance Heat Pipe (A0076). In The Long Duration Exposure

Facility (LDEF) Mission 1 Experiments, NASA SP-473, pp. 66-69,

1984. (preflight)

(2) Input received from Experiment Investigator, June 1988 and

July 1993.

(3) Grote, M. G.: Results from the Cascaded Variable Conductance

Heatpipe Experiment on LDEF. AIAA Paper #91-1356, to be pub-

lished June 25, 1991, 31 pp. (post-flight, received from Grote)

(4) Calhoun, L. D. and Grote, M. G.: The Cascaded Variable Con-

ductance Heatpipe Experiment on LDEF. AIAA Paper #AIAA-81-1157,

16th Thermophysics Conference, Palo Alto, California, June 23-25,

1981, 8 pp. (preflight, heat pipe description)

Contact(s):

M. G. Grote/lll-ll71

McDonnell Douglas

Electronic Systems Company
P.O. Box 516

St. Louis, MO 63166-0516
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Principal Investigator(s): Owen, J. W. (1), Edelstein, F. (2)
Co-Investigator(s): Unknown

Affillation(s): (1) National Aeronautics and Space Administration

(NASA), Marshall Space Flight Center (MSFC), Huntsville, Alabama;

(2) Grumman Aerosapce Corporation, Bethpage, New York

Experiment Origin: USA

Mission: Launched: STS Launch #ii, STS-013 (STS 41-C,

Challenger); Returned: STS-032 (Columbia)

Launch Date/Expt. Date: April 1984. The experiment, which was on

the LDEF free-flying facility, orbited the Earth for 6 years and

then was returned via the space shuttle in January 1990.

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Experiment within the Long Duration Exposure

Facility (LDEF) (a STS Deployed Satellite)

Processing Facility: Transverse Flat-Plate Heat Pipes
Builder of Processing Facility: Unknown

Experiment:

Transverse Flat-Plate Heat Pipe Experiment (Sl005)

The Long Duration Exposure Facility (LDEF) was a free-flying

cylindrical structure (30 ft. long and 14 ft. in diameter) placed

in orbit by the space shuttle at an altitude of 257 nautical

miles and an inclination of 28.5 degrees. The structure con-

tained 57 science and technology experiments located in trays

mounted on the exterior of the structure. LDEF was tc be

retrieved after approximately 9 months. However, the satellite

remained in orbit for nearly 6 years because shuttle flights were

delayed following the loss of the space shuttle Challenger. LDEF

was eventually retrieved at an altitude of approximately 180
nautical miles.

This LDEF experiment was designed to demonstrate the low-gravity

performance of existing heat pipe thermal control technology.

The specific objectives of the experiment were to (i) provide an

"integral temperature control/mounting panel" for electronic

equipment, scientific instruments, and experiments, (2) evaluate

the thermal performance of heat pipe modules under low-gravity

conditions, and (3) correlate retrieved flight data with data

from pre- and post-flight thermal vacuum tests. Evaluation of

the thermal performance (objective #2) included determining (i)

the transport capability of the pipes, (2) temperature drops in

the system, (3) the ability of the pipes to maintain temperature

over varying duty cycles and environments, and (4) pipe perfor-
mance degradation.

18-166



The experiment utilized current transverse flat-plate heat pipe

technology. "A transverse heat pipe is a variable-conductance

heat pipe (VCHP) which can handle relatively large thermal loads.

It was developed to circumvent the gas bubble artery blockage

problem associated with conventional artery wick designs which

limited their capacity to small loads in the VCHP mode. In the

basic design of a transverse heat pipe, liquid flows in a direc-

tion transverse or perpendicular to the vapor flow. Temperature

control is achieved by using conventional noncondensible-gas

techniques." (i, p. 74)

Three transverse flat-plate heat pipe modules were contained in

one of the LDEF experimental trays. Heat was supplied to the

evaporator side by 28-V lithium monofluorographite batteries.

The batteries simulated various watt density equipment heat dis-

sipaters. The heat was radiated to space from the outboard-

facing radiator surface. <Note: Although the experiment objec-

tives stated that the experiment was to provide integral tempera-

ture control for electronic equipment, scientific instruments and

experiments, it appears that there were no such instruments or

experiments associated with the heat pipe. The thermal loads,

(as stated above) were supplied by batteries.> Thermal data were

obtained via thermocouples and recorded on magnetic tape. The

entire experiment was self-contained with respect to power

supply, data storage, and on-orbit cycling. Power for data

recording was provided by LiSO 2 batteries.

During the LDEF mission, the experiment had three "on-times",

each lasting approximately 13 hours (8.6 orbits). Each "on-time"

was divided into two 4.3 orbit heater input sub-periods lasting

approximately 6.5 hours. The first "on-time" was initiated about

1 month after the shuttle launch, the second was 6.75 days later,

and the third was 135 days after the shuttle launch.

After the LDEF had been retrieved and returned to Earth, the ex-

periment package and all components were subjected to a complete

systems checkout. It was determined that the batteries still

contained power but were drained quickly, much like a discharging

capacitor. The heater elements were cycled on/off to verify

operation, the thermistor data was collected, and calibration was

verified. It was reported that the experiment power and data

(EPDS) components were within nominal operating parameters and

that the experiment was returned in complete operational condi-

tion.

No other results from this experiment had been published when

this experiment summary was prepared.
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Key Words: Technological Experiments, Heat Pipes, Heat Transfer,

Thermal Control, Evaporators, Heat Radiators, Vaporization, Fluid

Management, Free-Flying Satellite

NUmber of Samples: three transverse heat pipes

Sample Materials: unknown

Container Materials: unknown

Experiment/Material Applications:

Heat pipes have been used on spacecraft for thermal control pur-

poses. Little or no power consumption is expended using such

heat pipes as the thermal control system.

References/Applicable Publications:

(1) Owen, J. W. and Edelstein, F.: Transverse Heat Pipe Experi-

ment. In NASA Langley Research Center Long Duration Exposure

Facility (LDEF), NASA SP-473, pp. 74-77. (preflight)

(2) Edelstein, F.: Transverse Flat Plate Heat Pipe Experiment.

AIAA Paper #78-429, pp. 254-259. (preflight)

Contact(s):

J. W. Owen

Mail Code ED61

NASA Marshall Space Flight Center, AL 35812
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Principal Investigator(s): McIntosh, R., Jr. (1), Ollendorf, S.

(2), McCreight, C. R. (3)

Co-Investigator(s): Unknown

Affiliation(s}: (1,2) National Aeronautics and Space Administra-

tion (NASA), Goddard Space Flight Center, Greenbelt, Maryland;

(3) NASA Ames Research Center (ARC), Moffett Field, California

Experiment Origin: USA
Mission: Launched: STS Launch #ii, STS-013 (STS 41-C,

Challenger); Returned: STS-032 (Columbia)

Launch Date/Expt. Date: April 1984. The experiment, which was on

the LDEF free-flying facility, orbited the Earth for 6 years and

then was returned via the space shuttle in January 1990.

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Experiment within the Long Duration Exposure

Facility (LDEF) (a STS Deployed Satellite)

Processing Facility: Heat Pipe Experiment Package (HEPP)

Builder of Processing Facility: Unknown

Experiment:

Low Temperature Heat Pipe Experiment Packaqe (HEPP) (Sl001)

The pumping action of a heat pipe is driven by relatively weak

gravity-independent, capillary forces. Reliable data concerning

the performance of heat pipes is difficult to obtain on Earth be-

cause gravity-dependent forces acting on the system often over-

whelm gravity-independent forces. Determining the role of capil-

lary forces is further compounded on Earth when studying fluids

which have relatively low surface tensions (e.g., low-temperature

and cryogenic fluids).

This experiment was the second in a series of investigations

designed by McIntosh and/or Ollendorf et al. to study the perfor-

mance of heat pipes under low-gravity conditions (see Ollendorf,

STS-003 (this chapter)). Specifically, the experiment was

designed to investigate the performance of low-temperature (<190

K) heat pipes during the Long Duration Exposure Facility (LDEF)

mission. The objectives of the experiment were to (i) determine

the start up performance of low-temperature conventional and

diode heat pipes under low-gravity conditions, (2) evaluate the

low-gravity performance of the heat pipes over an extended period

of time, (3) determine the low-gravity transport performance of

the heat pipes, and (4) determine the forward conductance,

turndown ratio, and transient behavior of the diode heat pipe.

The Long Duration Exposure Facility was a free-flying, cylindri-

cal structure (30 ft. long and 14 ft. in diameter) placed in or-

bit by the space shuttle at an altitude of 257 nautical miles and

an inclination of 28.5 degrees. The structure contained 57
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science and technology experiments located in trays mounted on
the exterior of the structure. LDEF was to be retrieved by the
shuttle after approximately 9 months. However, the satellite
remained in orbit for nearly 6 years because shuttle flights were
delayed following the loss of the space shuttle Challenger. LDEF

was eventually retrieved at an altitude of approximately 180
nautical miles.

The Heat Pipe Experiment Package (HEPP) was located in a tray
which pointed toward deep space for the duration of the mission.

Two heat pipes, a constant conductance heat pipe (CCHP) and a

thermal-diode heat pipe, were coupled to a radiator cooler sys-

tem. Both heat pipes used ethane as the working fluid. Also in-

tegrated with the radiator was a phase change material (PCM)

canister which allowed thermal stability during transport tests

(the PCM was N-heptane which has a melting point of 182 K). The

canister provided a high-heat capacity (28 W-hr of latent heat)

which allowed high-power heat pipe testing (e.g., 40 W for 40

minutes) at a constant temperature.

Multilayer insulation blankets and a shielding configuration were

used to maximize radiation to deep space and protect the ap-

paratus from impacts. Also located on the experiment tray were

coated Kapton samples for investigation of atomic oxygen erosion.

Standard LDEF power and data systems were used for data collec-

tion and recording. Power was provided by a dedicated solar-

panel Ni-Cd battery system located in another tray.

Post-flight, it was reported "...that the HEPP cooled to a mini-

mum of 190 K on a cyclic basis. The operation of the CCHP and

the diode with a 1-watt heat load applied to each was

demonstrated over the entire 13 month period of recorded data.

However, the inability of the HEPP to cool below 180 K prevented

the electronics from executing programmed test profiles. As a
result transport tests and diode reverse mode tests were not con-

ducted and of course the freezing and thawing of the PCM could

not be achieved." (3, p. 99)

No other results from this experiment had been published at the

time this experiment summary was written.

Key Words: Technological Experiments, Heat Pipes, Thermal Con-

trol, Capillary Flow, Capillary Forces, Surface Tension, Heat

Transfer, Liquid Transfer, Heat Radiators, Solar Energy, Phase

Transition, Cryogens, Free-Flying Satellite, Processing Dif-
ficulties
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Number of Samples: two heat pipes

Sample Materials: Working fluid: ethane; phase change material:

N-heptane

(C'H*)
Container Materials: unknown

Experiment/Material Applications:

"Although the majority of heat pipe applications to date have

been related to ambient temperature operation, a number of ap-

plications for low temperature and cryogenic heat pipes have been

identified. Cryogenic heat pipe radiant coolers could be used to

augment or replace solid cryogen coolers in order to achieve

longer life and/or reduce weight. The coupling of remote sensors

to a centrally located cooler.., has also been considered." (2,

p. 418)

References/Applicable Publications:

(i) McIntosh, R., Jr., Ollendorf, S., and McCreight, C. R.: Low-

Temperature Heat Pipe Experiment Package (HEPP) for LDEF ($1001).

In The Long Duration Exposure Facility (LDEF) Mission 1 Experi-

ments, NASA SP-473, pp. 70-71. (preflight).

(2) Suelau, H. J., Brennan, P. J., and McIntosh, R.: HEPP-A Low

Temperature Heat Pipe Experiment Package Developed for Flight On-

Board the Long Duration Facility (LDEF). In Third International

Heat Pipe Conference, Palo Alto, California, May 22-24, 1978,

Technical Papers, AIAA Paper #78-459, pp. 418-425. (preflight)

(3) McIntosh, R. and Brennan, P. J.: Long Duration Exposure

Facility (LDEF) Low-Temperature Heat Pipe Experiment Package

(HEPP). In First LDEF Post-Retrieval Symposium Abstracts, Kis-

simmee, Florida, June 2-8, 1991, NASA CP-I0072, p. 99. (post-

flight, abstract of conference presentation)

Contact(s):

Roy McIntosh
Code 732

NASA Goddard Space Flight Center

Greenbelt, MD 20771
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S. Ollendorf
Mail Code 706
Bldg Ii
Room E28A
NASA Goddard Space Flight Center
Greenbelt, MD 20771
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Principal Investigator(s): McIntosh, R. (I)

Co-Investigator(s): Peterson, N. E., Jr. (2), National

Aeronautics and Space Administration (NASA), Goddard Space Flight

Center (3)

Affiliation(s): (1,2) National Aeronautics and Space Administra-

tion (NASA), Goddard Space Flight Center (GSFC), Greenbelt,

Maryland; (3) Greenbelt, Maryland

Experiment Origin: USA

Mission: STS Launch #16, STS-023 (STS 51-D, Discovery)

Launch Date/Expt. Date: April 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-471

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-471: NASA Goddard Space Flight

Center, Greenbelt, Maryland/OAO, Inc., Greenbelt, Maryland

Processing Facility: A miniaturized capillary pumped loop heat

pipe system which included (1) two capillary pumped evaporators

mounted in parallel, (2) integral heaters attached directly to

the outer surfaces of the evaporators, (3) a fluid loop, and (4)
a condenser plate.

Builder of Processing Facility: The OAO Corporation, Greenbelt,

Maryland, built the miniaturized capillary pumped loops.

Experiment:

Capillary Pumped LooD (CPL)

Capillary Pumped Loop (CPL) heat pipe systems can possibly be

used to provide thermal control of (i) the environment onboard an

orbiting spacecraft or (2) scientific instruments or components

onboard the craft. The CPL system employs a wick of porous

material (high density polyethylene) which, via capillary forces,

aids in the pumping of fluid in the closed loop heat pipe. The

working fluid of the system is drawn through the wick to the

metallic shell of the evaporator where heat is added and the liq-

uid vaporizes. A pressure gradient produced by the evaporation

process pumps the vapor to the condenser. At the condenser, the

heat is removed from the vapor and the vapor condenses. The

resultant liquid is returned via the wick to the evaporator where

the cycle repeats.

This experiment was the first in a series of investigations

designed by McIntosh et al. to demonstrate the capability of a

capillary pumped loop system (operating in low gravity) to
achieve thermal control.

Ground testing of an engineering model employing eight capillary

pumps mounted in parallel indicated that the system had heat car-
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rying capabilities of up to 6.4 kilowatts. Because the capillary
pump operation is sensitive to the effects of gravity, space
testing of a CPL system was proposed to evaluate the low-gravity
performance of the heat pipe.

<Note: Reference (2), which provided the most detailed descrip-
tion of the CPL system, discussed both the STS-023 and STS-025
experimental setup and experimental sequence as if they were ex-
actly the same on both missions (except for a change to the bat-
tery encasement for STS-025). Therefore, it was assumed that the
expected experiment sequence as presented below (which was based
on Reference (2)) applies to STS-023. However, as can be seen in
editorial notes presented later in this experiment summary, other
references (which were published prior to the launch of STS-023)
do not correlate with the description provided in Reference (2).>

The experiment was developed using a significant amount of
hardware which had flown in support of previous (essentially
unrelated) GAS experiments. Thus, the size of the CPL system
that could be examined was somewhat limited by the volume
requirements of this available hardware. Nonetheless, a "mini-
CPL" system was developed (measuring approximately 14" long by
14" wide by 4" high) which maintained most of the operating fea-
tures of the ground-based system.

The mini-CPL system included (i) two capillary pumped evaporators
mounted in parallel, (2) integral heaters attached directly to
the outer surfaces of the evaporators, (3) a temperature-
controlled, two-phase reservoir, (4) a fluid loop charged with
ammonia, (5) a condenser plate (heat sink), and (6) various con-
trol electronics.

The importance of a two-phase reservoir was detailed. "By con-
trolling the reservoir temperature, the loop temperature is con-
trolled as well, since the saturation temperature of the working
fluid is controlled at the reservoir. This means that the pumps
(evaporators) stay at a relatively constant temperature regard-
less of temperature control in the loop. The loop temperature
can be varied simply by raising or lowering the reservoir tem-
perature to the desired level. Another salient feature of the
reservoir is fluid inventory control. The reservoir can also be
used for pressure priming of the pumps during startup opera-
tions." (2, p. 238)

The expected space experiment operating times were based on a
(preflight) thermal control analysis of the CPL GAS payload.

This analysis indicated that the payload could accommodate

"...experiment heater cycles of up to 220 watts total (II0 watts

on each pump) for operating times of up to one hour, followed by

a cool down period lasting approximately i0 hours." (2, p. 241)
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Reportedly, the expected heating/cooling sequence of the payload
was the following: "The experiment condenser was... [to
initially] cool to approximately 5 °C, then the experiment
heaters were [to be] activated. Since the power input... [was
expected to exceed] the instantaneous heat rejection capability
of the GAS top plate, the condenser temperature... [would
increase]. When the condenser temperature... [approached] the
CPL operating temperature of 29 °C it... [would no longer be able
to] absorb any more heat and the system... [would] shut down
and.., cool down. The heater cycle... [would then be] repeated
after the condenser... [cooled] back down to about 5 °C. During
the flight, the cycles [were to be] repeated for the total mis-
sion time, approximately 120 hours." (2, p. 241)

<Note: A description of the expected experiment operating time
as detailed in Reference (5) (published prior to the STS-023
Shuttle launch) differed somewhat to the operating time detailed
directly above: "During the Shuttle flight, the experiment will
be turned on within 24 hours of launch and continue for at least
60 hours and up to 96 hours, if possible." (5, p. 17)

Further, Reference (3) (also published prior to the STS-023
Shuttle launch) indicated that the working fluid was to be Freon-
ii, not ammonia.>

Post-flight analysis of the payload indicated that "...the GAS
batteries that actuate the relay to activate the experiment
failed so the CPL could not be turned on during flight. The

failure was apparently due to a bad batch of batteries that

failed under a combination of vacuum and cold temperatures, even

though they had passed qualification testing." (2, p. 244)

Key Words: Technological Experiments, Heat Pipes, Thermal Con-

trol, Heat Transfer, Vaporization, Evaporators, Evaporation, Con-

densers, Condensation, Phase Transition, Wicking, Surface Ten-

sion, Capillary Flow, Capillary Forces, Liquid Transfer,

Liquid/Vapor Interface, Fluid Management, Porous Material, Bat-

tery Failure

Number of Samples: one mini-CPL setup

Sample Materials: It appears that the working fluid was ammonia

NH3.(N*H* ) However, one document (Reference (3), which was pub-
lished prior to the flight) indicated that the working fluid was

to be Freon-ll.

(N,H*)
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Container Materials: unknown

Experiment/Material Applications:
This research was initiated to demonstrate that CPL heat pipes

could be used in a low-gravity environment to provide thermal

control for scientific instruments and spacecraft. CPL thermal

control systems may be placed on future spacecraft. "The capil-

lary pumped-loop approach acquires and transports heat nearly

isothermally for long transport distances and under a wide range

of power levels." (7, p. 9)

Reportedly, ammonia was chosen as the working fluid because it is

"...the fluid of choice on contemplated Space Station Freedom

thermal control systems." (7, p. I0)

References/Applicable Publications:

(I) Ku, J., et al.: Capillary Pumped Loop Gas and Hitchhiker

Flight Experiments. Fourth AIAA and ASME Joint Thermophysics and

Heat Transfer Conference, Boston, Massachusetts, June 2-4, 1986,

15 pp., AIAA Paper #86-1249. (post-flight; Note: this document

does not discuss the STS-023 experiments.)

(2) Butler, D.: The Capillary Pumped Loop (CPL) Gas Experiment G-
471. In Goddard Space Flight Center's 1985 Get Away Special

Experimenter's Symposium, October 8-9, 1985, NASA CP-2401, pp.

237-253. (post-flight)

(3) Cargo Systems Manual: Gas Annex For STS 51-D, JSC-17645 51-D,

March 20, 1985. (short description; preflight)

(4) Get Away Special... the first ten years. Published by God-

dard Space Flight Center, Special Payloads Division, the NASA GAS

Team 1989, p. 25. (post-flight, very brief description)

(5) NASA STS 51-D Press Kit, April 1985. (preflight)

(6) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(7) Hill, M. E. and O'Malley, T. F.: A Summary of Existing and

Planned Experiment Hardware for Low-Gravity Fluids Research.

AIAA 29th Aerospace Sciences Meeting, January 7-10, 1991, Reno,

Nevada, AIAA-91-0777, pp. 9-10 (also NASA TM-I03706). (post-

flight)
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Contact[s)=

Roy McIntosh
Code 732

NASA Goddard Space Flight Center

Greenbelt, MD 20771

Norman E. Peterson, Jr.

Flight Support Manager

Code 740.1

NASA Goddard Space Flight Center

Greenbelt, MD 20771
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Principal Investigator(s): McIntosh, R. (1)

Co-Investigator(s) : Peterson, N. E., Jr. (2) , National

Aeronautics and Space Administration (NASA), Goddard Space Flight
Center (GSFC) (3)

Affiliation(s) : (1,2) NASA Goddard Space Flight Center (GSFC),

Greenbelt, Maryland; (3) Greenbelt, Maryland

Experiment Origin: USA

Mission: STS Launch #18, STS-025 (STS 51-G, Discovery)

Launch Date/Expt. Date: June 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-471R
Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-471R: NASA Goddard Space Flight

Center, Greenbelt, Maryland/OAO, Inc., Greenbelt, Maryland

Processing Facility: A miniaturized capillary pumped loop heat

pipe system which included (1) two capillary pumped evaporators

mounted in parallel, (2) integral heaters attached directly to

the outer surfaces of the evaporators, (3) a fluid loop, and (4)
a condenser plate.

Builder of Processing Facility: The OAO Corporation, Greenbelt,

Maryland, built the miniaturized capillary pumped loops.

Experiment:

Capillary Pumped Loop (CPL)

This experiment was the second in a series of investigations

designed by McIntosh et al. to demonstrate the capability of a

capillary pumped loop (CPL) system (operating in low gravity) to

achieve thermal control (see McIntosh, STS-023). (A detailed

description of the CPL heating and cooling cycle can be found un-

der McIntosh, STS-023).

The STS-025 experiment was nearly identical to the earlier STS-

023 CPL investigation. In fact, the experimental hardware and

anticipated experiment sequence appears to have been the same.

The only significant change mentioned for the STS-025 payload was

related to a battery failure that occurred on STS-023. Because

it was thought that the STS-023 GAS batteries failed to operate

in the vacuum and cold temperatures of space, the STS-025 bat-

teries were enclosed in a hermetically sealed box.

As earlier detailed under McIntosh, STS-023, the experiment was

developed using a significant amount of hardware which had flown

in support of previous (essentially unrelated) GAS experiments.
Thus, the size of the CPL system which could be examined was

somewhat limited by the volume requirements of this available

hardware. Nonetheless, a "mini-CPL" system, which maintained
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most of the operating features of the ground-based system was
developed.

The mini-CPL system, which measured approximately 14" long by 14"
wide by 4" high, was mounted directly to the GAS top plate. The
system included (i) two capillary pumped evaporators mounted in
parallel to a common vapor header, (2) integral heaters attached
directly to the outer surfaces of the evaporators (simulating the
heat dissipation from a spacecraft component), (3) a single
multi-pass condenser tube attached to a condenser plate (heat
sink), (4) a temperature-controlled, two-phase reservoir, (5) a
subcooled liquid return line, and (6) various control
electronics. The "...15 pound condenser plate and the 25 pound
GAS top plate to which the condenser plate... [was] mounted...
[comprised] the system heat sink. (i, p. 3)

The importance of the two-phase reservoir was introduced under
McIntosh, STS-023. A further discussion of the reservoir was
reported in Reference (i). "One of the... [principle] issues
that had to be addressed in the flight experiment was the design
of a two-phase reservoir for zero-g application. Breadboard and
engineering model prototypes tested previously had utilized
gravity to ensure only liquid entered the CPL loops from their

reservoirs. To obtain the same result in the zero-g environment,

the reservoir line was connected to the condenser plate before

reaching the CPL loop. The... [intended] purpose was to condense

any vapor leaving the reservoir. This feature was necessary in

order to avoid a deprime of the CPL system as a result of vapor

displacement. Also, reservoir liquid/vapor management in zero-g

required capillary devices to maintain liquid�vapor separation

and to ensure preferential liquid displacement. Consequently, a

reservoir design that employed wicked liquid acquisition baffles

was developed for the GAS/CPL flight experiment." (i, p. 3)

The experiment operating times were based on a (preflight) ther-

mal control analysis of the CPL GAS payload. This analysis indi-

cated that the payload could accommodate "...experiment heater

cycles of up to 220 watts total (Ii0 watts on each pump) for

operating times of up to one hour, followed by a cool down period

lasting approximately i0 hours." (2, p. 241)

<Note: Reference (i) reported different heater loads: "...the

planned heater cycles included a maximum power input of up to 200

watts total (I00 watts per evaporator) for operating periods of

up to one hour, followed by cooldown periods lasting about nine

hours." (i, p. 3)>
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Reportedly, the expected heating/cooling sequence of the payload

during a typical planned heating cycle was to include the

following: "The experiment condenser was... [to initially] cool

to approximately 5 °C, then the experiment heaters were [to be]

activated. Since the power input... [was expected to exceed] the

instantaneous heat rejection capability of the GAS top plate, the

condenser temperature... [would increase]. When the condenser

temperature... [approached] the CPL operating temperature of 29

°C it... [would no longer be able to] absorb any more heat and

the system... [would] shut down and.., cool down. The heater

cycle... [would then be] repeated after the condenser... [cooled]

back down to about 5 °C. During the flight, the cycles [were to

be] repeated for the total mission time, approximately 120

hours." (2, p. 241) (Other cycle scenarios were also planned.)

Reportedly, "A total of 13 power profiles were run during the 120

hour mission. The majority of the power cycles involved heating

each evaporator with a constant i00 watts for 30 minutes; other

profiles were interspersed .... The definitions and objectives of

the cycles are described below:

"a .... Heat input of i00 watts was applied to each evaporator.

The purpose was to verify that the same start-up procedure

used... [on] the ground could be applied in the zero-g environ-
ment with similar results.

"b .... Heat input of I00 watts was applied to one evaporator

only. The objective of this test was to demonstrate that vapor

from the heated evaporator would backflow into the other and con-

dense there. This showed that the CPL can not only be used to

transfer heat away from a heat source, but also to transport heat

to unheated evaporators.

"c .... Heat input of 25 watts was applied to each evaporator.

The purpose of this test was to find out whether the system would

prime under such a low power condition in the zero-g environment.

"d .... Initial heat input of I00 watts was applied to each

evaporator followed by heat input to one of the evaporator inlets

to intentionally deprime that evaporator pump. The objective was

to demonstrate the ability of the CPL system to isolate a single

pump after it has deprimed so that the remainder of the system

would continue to function normally.

"e .... Initial heat input of i00 watts was applied to each

evaporator followed by a reduction of power to one of the

evaporators. The purpose was to demonstrate the ability of the

system to adjust to changes in the system power input." (i, p. 4)
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Post-flight analysis of the payload indicated that the experiment
was "very successful" and that (I) the GAS relays operated satis-
factorily, (2) the mini-CPL operated for the planned 120 hours
(demonstrating the 13 power cycles), (3) all of the power
profiles could be examined (even the low power cycle which would
not work on the ground), and (4) none of the cycles deprimed.

<Note: The low power cycle referred to above probably pertains
to an operational profile proposed by OAO Corporation which was

to begin "...with lower power on the pumps (25 watts each), with

25 watt step increases to i00 watts each at the end of 45

minutes. When this power profile was tried [on the ground] the

evaporator pumps deprimed soon after startup and would no longer

carry the applied heat load, as evidenced by a sudden rise in

their temperature." (2, p. 242)>

Reference (5) reported that "Little difference was found between

normal-gravity and microgravity system performance." (5, p. i0)

Because the majority of the power profiles were that of cycle (i)

detailed above, an abridged discussion of the results pertaining

to this cycle are presented:

"The reservoir temperature controller was set at 29 °C during

this cycle as it was for the full 120-hour mission. With the

evaporators at 7 °C, power was applied, and the evaporator tem-

peratures rose quickly to reach the system saturation temperature

as determined by the reservoir set point. Consequently, liquid

ammonia began to vaporize, and the pumping action inside the

evaporators started. The evaporator temperatures remained steady

at 30 °C until the heater power was turned off about thirty

minutes later .... " (i, p. 4) Other details of the cycle can be

found in Reference (i).

A discussion of the results from some of the other power cycles

were also presented in Reference (I).

Key Words: Technological Experiments, Heat Pipes, Thermal Con-

trol, Heat Transfer, Vaporization, Evaporators, Evaporation, Con-

densers, Condensation, Phase Transition, Phase Separation, Wick-

ing, Baffles, Surface Tension, Capillary Flow, Capillary Forces,

Liquid Transfer, Liquid/Vapor Interface, Fluid Management
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Number of Samples: one mini CPL system

Sample Materials: The working fluid was ammonia, NH 3.

(N'H*)
Container Materials: unknown

Experiment/Material Applications:

See McIntosh, STS-023.

References/Appllcable Publications:

(i) Ku, J., Kroliczek, E. J., Butler, D., Schweickart, R. B., and

McIntosh, R.: Capillary Pumped Loop Gas and Hitchhiker Flight Ex-

periments. Fourth AIAA and ASME Joint Thermophysics and Heat

Transfer Conference, Boston, Massachusetts, June 2-4, 1986, 15

pp., AIAA Paper #86-1249. (post-flight)

(2) Butler, D.: The Capillary Pumped Loop (CPL) GAS Experiment G-

471. In 1985 Get Away Special Experimenter's Symposium, NASA CP-

2401, NASA Goddard Space Flight Center, Greenbelt, Maryland, Oc-

tober 8, 1985, pp. 237-253. (post-flight)

(3) Kolcum, E. H.: Fuel Contaminant Threatens Delay in Shuttle

Launch. Aviation Week and Space Technology, June 17, 1985, p.

21. (preflight)

(4) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(5) Hill, M. E. and O'Malley, T. F.: A Summary of Existing and

Planned Experiment Hardware for Low-Gravity Fluids Research.

AIAA 29th Aerospace Sciences Meeting, January 7-10, 1991, Reno,

Nevada, AIAA Paper #91-0777, pp. 9-10; also NASA TM-I02706.

(post-flight)

(6) NASA STS 51-G Press Kit, June 1985, p. 21. (preflight)

Contact(s):

Roy McIntosh

Code 732

NASA Goddard Space Flight Center

Greenbelt, MD 20771
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Norman E. Peterson, Jr.

Flight Support Manager
Code 740.1

NASA Goddard Space Flight Center

Greenbelt, MD 20771

18-183



Principal Investlgator(s): McIntosh, R. (1)

Co-Investigator(s): Unknown

Affillation(s): (1) National Aeronautics and Space Administration

(NASA), Goddard Space Flight Center (GSFC), Greenbelt, Maryland

Experiment Origin: USA

Mission: STS Launch #24, STS-032 (STS 61-C, Columbia)

Launch Date/Expt. Date: January 1986

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Hitchhiker HHG-01-B (A Get Away Special (GAS)

canister modified to be installed on the GSFC Hitchhiker system.)

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of HHG-01: NASA Goddard Space Flight

Center, Greenbelt, Maryland

Processing Facility: A miniaturized capillary pumped loop heat

pipe system which included (1) two capillary pumped evaporators

mounted in parallel, (2) integral heaters attached directly to

the outer surfaces of the evaporators, (3) a fluid loop, and (4)

a condenser plate

Builder of Processing Facility: The OAO Corporation, Greenbelt,

Maryland, built the miniaturized capillary pumped loops.

Experiment:

Capillary Pump Loop Experiment (CPL)

This experiment was the third in a series of investigations

designed by McIntosh et al. to demonstrate the capability of a

capillary pumped loop (CPL) system to achieve thermal control

(see McIntosh, STS-023; STS-025). (A detailed description of the

CPL heating and cooling cycle can be found under McIntosh, STS-

023.) The specific objective of this Hitchhiker experiment was

to acquire CPL performance data at power levels higher than those

levels which had been available on STS-025.

During the earlier STS-025 Get Away Special (GAS) experiment, a

battery contained within the GAS canister provided a maximum

power input of approximately 200 watts (i00 watts per evaporator)

to a mini-CPL system. In contrast, this STS-032 experiment (which

was carried in a modified GAS canister known as Hitchhiker) was

now powered by a space shuttle source. Thus, the maximum power

input to each evaporator could be increased to approximately 400

watts.

The STS-032 CPL system was very similar to the earlier STS-025

CPL investigation. The only significant hardware changes men-

tioned for the STS-032 payload were related to the accommodation

of increased heat loads. "The mass of the GAS container top

plate was increased from 25 to 140 pounds to increase the con-
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denser heat sink capability. Additional modifications included

removal of the thermal insulation blankets from the sides of the

gas container. This change increased the effective radiating

area of the container by a factor of three and, thus, enhanced

its heat rejection capability." (i, p. 6)

Because no further mention was made of modifications to the CPL

system, it was assumed that the configuration was essentially the

same as that on STS-025. Thus, the mini-CPL system, which was

mounted directly to the canister top plate, included (i) two

capillary pumped evaporators mounted in parallel to a common

vapor header, (2) integral heaters attached directly to the outer

surfaces of the evaporators (simulating the heat dissipation from

a spacecraft component), (3) a single multi-pass condenser tube

attached to a condenser plate (heat sink), (4) a temperature-

controlled, two-phase reservoir, (5) a subcooled liquid return

line, and (6) various control electronics. The importance of the

two-phase reservoir was introduced under McIntosh, STS-023, and

is further discussed under McIntosh, STS-025.

"The power cycles for the CPL on the Hitchhiker-G carrier were

similar to that for [STS-025] CPL/GAS. For most cycles, the sys-

tem was allowed to cool to 5 °C or below before power was ap-

plied. Again, even with the improved heat rejection capability,

the CPL... radiator could not reject as much heat as the

evaporator heaters could supply. Thus, when the condenser heat

sink capacity was exhausted, the heaters were shut off, and the

system was allowed to cool. A measured improvement was evident,

though since the heat rejection capacity of the [STS-032] CPL...

allowed for power cycles up to 600 watts for 40 minutes followed

by a four hour cool-down compared to 200 watts for 30 minutes

with a nine hour cool-down cycle for the [the STS-025] CPL/GAS

configuration." (i, p. 6)

Reportedly, a total of 38 power profiles were run during the 5-

day mission. The definitions and objectives of the cycles are

described below:

"a .... Various constant power levels were applied to both

evaporators. The objective of these tests were to verify the

system start-up and operation at power levels that spanned the

CPL's operating range.

"b .... Power was applied to both evaporators, with subsequent in-

creases or decreases in power to both. The purpose of these

tests were to find the high power system limit and to demonstrate

the ability of the system to adjust to an abrupt change in heat

loads.
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"c .... After the heat sharing mode of operation was confirmed,

power was applied to the unheated evaporator. The purpose of

this test was to demonstrate the ability of the evaporator to

prime with an inlet temperature level near the saturation tem-

perature. Also shown was the ability of an individual pump to

convert from evaporator mode to condenser mode and vise versa

without any active external control measures.

"d .... The reservoir set point was changed or allowed to vary.

The objective of this test was to demonstrate that the system

saturation temperature could be varied via the reservoir control-

ler while the system continued to operate normally.

"e .... Power was applied to an evaporator and was subsequently

increased to force an evaporator dry-out. Power to the dried out

evaporator was then shut off and the evaporator was allowed to

cool. When the evaporator temperature dropped below the satura-

tion temperature, power was re-applied. The purpose of this test

was to demonstrate quick recovery of an evaporator from a dry-out

condition.

"f .... Power levels below I00 watts per evaporator were applied

to each evaporator. The objective of these tests were to inves-

tigate the deprime phenomenon at lower power levels.

"g .... Power was applied to both evaporators when the condenser

temperature was just below the saturation temperature. The ob-

jective of this cycle was to determine the minimum required tem-

perature differential between the reservoir and the evaporator

inlets that would still permit proper system operation." (i, p.

5-6)

Post-flight analysis of the payload indicated that the experiment

was "very successful" and that (i) high and low power limits for

the Hitchhiker CPL were determined and (2) proper system opera-

tion in low gravity was verified. Further, because the

Hitchhiker system (i) allows data to be examined in real time on

the ground and (2) recognizes real-time commands from the ground,

"...real-time changes of the power profiles were accomplished,

and therefore, maximum, utilization of the experiment was real-

ized." (I, p. 6)

It was reported that "...no significant differences between zero-

g and one-g performance of the CPL have been identified to date.

This has increased confidence that CPL system performance can be

verified on the ground prior to implementation in space. None-

theless, further zero-g CPL experimentation is required on larger

systems to investigate zero-g effects on long transport dis-

tances, new condenser configurations and scaling laws.
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"A larger CPL consisting of four evaporators and four parallel
condensers with 10-meter transport lengths will be flown.., in
the future." (i, p. 8)

A discussion of the results from many of the power cycles were
presented in Reference (I).

Key Words: Technological Experiments, Heat Pipes, Thermal Con-

trol, Heat Transfer, Vaporization, Evaporators, Evaporation, Con-

densers, Condensation, Heat Radiators, Phase Transition, Phase

Separation, Wicking, Surface Tension, Capillary Flow, Capillary

Forces, Liquid Transfer, Liquid/Vapor Interface, Fluid Management

Number of Samples: one CPL system

Sample Materials: The working fluid was ammonia, NH 3.

(N,H*)
Container Materials: unknown

Experiment/Material Applications:

See McIntosh, STS-023.

References/Applicable Publications:

(I) Ku, J., Kroliczek, E. J., Butler, D., Schweickart, R. B., and

McIntosh, R.: Capillary Pumped Loop GAS and Hitchhiker Flight Ex-

periments. Fourth AIAA/ASME Joint Thermophysics and Heat Trans-

fer Conference, June 2, 1986, AIAA Paper #86-1249. (post-flight)

(2) Modified Columbia will Deploy RCA Satellite on Next Mission.

AW&ST, December 16, 1985. (concerns Hitchhiker facility only;

preflight)

(3) Mordoff, K. F.: Commercialization of Space: Shuttle

Hitchhiker Spurs Business Effort. AW&ST, June 25, 1984.

(concerns Hitchhiker facility only; preflight)

(4) Grote, M. G., Stark, J. A., Butler, C. D., and McIntosh, R.:

Design and Test of a Mechanically Pumped Two-Phase Thermal Con-

trol Flight Experiment. AIAA 22nd Thermophysics Conference, June

8-10, 1987, Honolulu Hawaii, AIAA Paper #87-1629. (future

payload)
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(5) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Company, Technical Report #EAC-

TR-RWR 87-11, October 2, 1987. (Get Away Special canister mis-
sion history)

Contact(s):

Roy McIntosh

Code 732

NASA Goddard Space Flight Center

Greenbelt, MD 20771
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Principal Investigator(s): Vanderhoff, J. W. (1)

Co-Investigator(s): EI-Aasser, M. S. (2), Micale, F. J. (3),

Kornfeld, D. M. (4)

Affiliation(s): (1) Emulsion Polymer Institute, Lehigh Univer-

sity, Bethlehem, Pennsylvania; (2,3) Lehigh University, Beth-

lehem, Pennsylvania; (4) National Aeronautics and Space Ad-

ministration (NASA), Marshall Space Flight Center (MSFC),

Huntsville, Alabama

Experiment Origin: USA

Mission: STS Launch #3, STS-3 (STS OFT-3, Columbia)

Launch Date/Expt Date: March 1982

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Middeck Experiment, Crew Compartment

Processing Facility: Monodisperse Latex Reactor (MLR): four one-

foot-tall chemical reactors, each containing 100 milliliters of a

chemical latex forming mixture, housed in a single, two-foot tall

Experiment Apparatus Container (EAC, metal cylinder); reaction
time: 12 hours

Builder of Processing Facility: Reactors: General Electric Co.,

Valley Forge, Pennsylvania; Support Electronics Package (SEP):

Rockwell International, Downey, California

Experiment:

Monodisperse Latex Reactor (MLR-I)

Latex is a suspension of small plastic spheres, usually in water.

Larger monodisperse (identical size) latex particles are produced

by adding monomers, initiators, and emulsifiers to a monodisperse

latex of a relatively small particle size. The monomer, which in

this case is totally soluble in the microspheres, is absorbed

into the existing "seed" microspheres; the seeds all swell

equally to the desired size. Upon heating, the initiator starts

polymerization of the monomer absorbed within the spheres, and

the emulsifiers help prevent coagulation. Thus larger particles

are grown from smaller seed particles, hopefully without (i) gen-

erating coagulum, or (2) nucleating a new crop of smaller par-
ticles.

On Earth, the largest monodisperse latex particles which can be

readily produced have diameters of several micrometers.

Generally the larger the particles produced, the worse their

monodispersity. Monodisperse latex particles can be grown by

emulsion, suspension, or dispersion polymerization techniques but

during the MLR program, only emulsion polymerization "recipes"

were flown. In this process, once the high density polymer seed

particles have been swollen with low-density monomer, the average

density of the particles becomes less than I, and the particles

tend to "cream" or float (in the Earth system) to the top of the
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container. After polymerization begins, the average density of

the growing particles continues to increase as the absorbed

monomer is being converted to polymer, until particle density has

again reached that of pure polymer. The larger these new par-

ticles are, the faster they settle. A stirring process can

prevent creaming and settling. However, the stirring required to

maintain the suspension causes particles to collide and stick

together. Coagulation of the particles results because of the

shear-force sensitive nature of the particles. Since buoyancy is

significantly reduced under low-gravity conditions, the creaming

and settling is eliminated and the multi-density suspension is
maintained.

This STS-003 experiment was the first in a series of investiga-

tions designed by Vanderhoff et al. to study the low-gravity

production of monodisperse polystyrene latex microspheres.

An apparatus known as the Monodisperse Latex Reactor (MLR) was

used to produce the latex particles. The flight apparatus con-

sisted of (i) four reactor cylinders (0.3 meter tall) contained

within an Experiment Apparatus Container (EAC), and (2) the Sup-
port Electronics Package (SEP). Each stainless steel reactor

cylinder (dilatometer) contained a stirring device for gentle

agitation (to insure uniform temperature) and a piston to indi-

cate the volume change during the reaction. (The polymerization

conversion-time curves were deduced from the decrease in volume.)

Each dilatometer contained four, three-pellet diodes for tempera-

ture measurement. The diodes were located (i) in a probe extend-

ing into the center of the chamber, (2) at the top interior sur-

face, (3) in the chamber wall midway between top and bottom, and

(4) at the bottom of the chamber, next to the stirrer shaft.

Heat was supplied to the dilatometers by a heating tape wrapped

around the outside of each reactor. Experiment control was

provided by microprocessors mounted on each of the four reactor

cylinders. The SEP provided the proper regulated dc voltage to

the reactors, and contained (i) a data tape recorder and (2) a

malfunction detection system.

Four different particle seed sizes (and their accompanying

monomer-polymer ratios) were selected for the STS investigation:
latex number 1 contained seeds of 2.5 microns and had a monomer-

polymer ratio of 2:1; latex number 2 contained seeds of 2.5

microns and had a monomer-polymer ratio of 4:1; latex number 3

contained seeds of 2.5 microns and had a monomer-polymer ratio of
i0:I; latex number 4 contained seeds of 0.19 microns and had a

monomer-polymer ratio of 2:1. The 0.19 micron sized seed experi-

ment used a potassium persulfate initiator and a sodium bicar-

bonate buffer (see References (2), (8), (9), or (i0) for other

latex recipe details).
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Prior to the mission, an exact amount of (i) styrene monomer, (2)

azo initiator, (3) inhibitor, and (4) emulsifier was added to the

seed latex under vacuum and at room temperature. After adding
these materials to each of the four latex reactors and then seal-

ing the reactors, constant stirring began in each of the

cylinders (13 rpm) and continued (i) during payload integration,

(2) vehicle launch, (3) prior to and until the on-orbit process-

ing steps had begun, and (4) throughout the duration of the ex-

periment. At the beginning of the low-gravity processing proce-

dure, each mixture was heated to 70 °C and, if required, the

stirrer speed was automatically adjusted. (Since particle size

consistency depends on the isothermal nature of the latex batch

(a temperature variation within different areas of the chamber of

even 1 °C will significantly increase the growth rate of the

polymer within the hot region), the material was gently stirred

to prevent temperature differences within the batch material.)

Once the particles became hot, the added monomer (which had been

absorbed by the seed particles and caused them to swell)

polymerized resulting in a slight particle shrinkage. This

shrinkage was measured, recorded on the data tape recorder in the

SEP, and used to calculate the reaction rates. After 10.4 hours

at 70 °C, the temperature was increased to 90 °C for 0.75 hours

to destroy the remaining traces of the initiator and push the

reaction to 100% completion. After the mission, the dilatometers

were cleaned and ground control experiments were performed.

Post-flight examination of the latex particles and recorded data

indicated that the experiment using the 0.19 micron sized seed

particles polymerized prematurely and, therefore, no reaction

rate data were available for this experiment. However, each of

the remaining three experiments (2.5 micron seed) produced a very

good latex product. All latexes were completely polymerized and

were monodisperse. Latex number 2 did contain a small lump of

coagulum which restricted the motion of the stirrer after the

flight. However, the remaining latexes contained negligible

amounts of coagulum. The reported product size for (i) latex

number 1 was 3.4 microns, (2) latex number 2 was 4.1 microns, and

(3) latex number 3 was 5.0 microns. It was reported that

"...there were subtle differences in particle size distribution

between the three flight latexes and the ground-based control

latexes. The coefficients of variation were about the same for

all latexes except for ground-based control latex 3, which was

broader in particle size distribution. The standard deviations

increased only slightly with increasing particle size." (i0, p.

3)

The conversion-time curves for the flight polymerizations were

essentially the same as the curves of the ground-based

polymerizations. The 2:1 monomer to polymer ratio had a sig-

nificant upward deviation from linearity indicating autoaccelera-
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tion. <Note: Autoacceleration was defined as "...when the vis-
cosity of the medium (inside the spheres) increases to the point
where the rate of termination decreases, and at the same time the
rate of propagation remains constant, so that the net overall ef-
fect is an increase in the overall rate of polymerization.
During this period of autoacceleration (maximum polymerization
rate) the particles become especially susceptible to shear-
induced coagulation." (ii)> The 4:1 ratio had only a slight up-
ward deviation, and the I0:I ratio had a nearly linear variation.
"Since the critical particle size for the transition from emul-
sion polymerization kinetics to bulk polymerization kinetics is
ca. 1.3... [microns] for the styrene-polystyrene system at 70...
[degrees] [see Reference (i0)], the polymerization rate should be
proportional to the monomer concentration and the square root of
the initiator concentration in the absence of autoacceleration.
The upward deviation from linearity began earlier, the lower the
monomer-polymer ratio, as expected from the higher viscosity of
the particles." (i0, p. 5)

Key Words: Technological Experiments, Emulsion Polymerization,
Monodisperse Latex Particles, Polystyrene Latex Microspheres,
Spheres, Suspension of Particles, Stirring of Components, Shear

Forces, Sedimentation, Nucleation, Particle Growth, Particle Size

Distribution, Collisions, Coagulation, Buoyancy Effects

Diminished, Thermal Control, Isothermal Processing, Piston Sys-

tem, Volume Change, Volume Compensation, Contained Fluids, Vis-

cosity, Vacuum, Processing Difficulties

Number of Samples: four

Sample Materials: Monomer: styrene, water; Latex #i: seed

diameter = 2.5 microns at 2/1 monomer/polymer ratio; Latex #2:

seed diameter = 2.5 microns at 4/1 monomer/polymer ratio; Latex

#3: seed diameter = 2.5 microns at 10/1 monomer/polymer ratio;

Latex #4: seed diameter 0.19 microns at 2/1 monomer/polymer

ratio; buffer (Latex 4 only): sodium bicarbonate; initiator

(Latex 4 only): potassium persulfate (see References (8), (9), or

(10) for other recipe details)

Container Materials: stainless steel
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Experiment/Material Applications:

"There are many uses for monodisperse latex particles. Medical

applications include pore size standards for stomach, peritoneal

cavity, membrane and intestinal wall pores for ongoing cancer re-

search, eye exit channel pore size for glaucoma research, and do-

it-yourself tests. Research to develop carriers for drugs and

radioactive isotopes inside tumors and organs that will control

dosages, increase drug effectiveness, and reduce toxicity is

being done. As calibration standards, the particles will be used

in blood cell counters, as internal standards in electron and op-

tical microscopes, and in filter calibration. Chemical analysis

of biological and other material will be enhanced through

chromatography column packing. Anti-blocking agents for the

plastics industry is another area in which the monodisperse latex

will be used .... " (6, p. 8)

References/Applicable Publications:

(i) Tseng, C.-M., Ei-Aasser, M. S., and Vanderhoff, J. W. :

Modeling the Equilibrium Swelling of Latex Particles. In Com-

puter Applications in Applied Polymer Science, edited by T. Prov-

der, ACS Symp. Ser. 197, pp. 197-208 (1982).

(2) Kornfeld, D. M.: Monodisperse Latex Reactor (MLR) - A

Materials Processing Space Shuttle Middeck Payload. NASA TM-

86487, January 1985. (post-flight)

(3) STS 3rd Space Shuttle Mission, March 1982, NASA Press Kit,

pp. 63-64. (preflight)

(4) STS-7 Seventh Space Shuttle Mission. June 1983, NASA Press

Kit, p. 51. (briefly discusses success of STS-003)

(5) "First Space Product Set to be Developed for Commercial Use."

NASA Activities, August 1984, Vol. 15, No. 8, pp. 5-6. (post-

flight)

(6) Monodisperse Latex Reactor (MLR). Application Payload

Projects, Spacelab Payload Project office, NASA Marshall Space

Flight Center, Huntsville, Alabama, 8 pp. (document prepared by

Teledyne Brown Engineering)

(7) Vanderhoff, J. W., Ei-Aasser, M. S., Micale, F. J., Sudol,

E. D., Tseng, C.-M., Silwanowicz, A., and Kornfeld, D. M. :

Preparation of Large-Particle Size Monodisperse Latexes in Space.

J. Dispersion Sci. Technology, Vol. 5, pp. 231-246, 1984.
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(8) Vanderhoff, J. W., EI-Aasser, M. S., Micale, F. J., Sudol,

E. D., Tseng, C.-M., Silwanowicz, A., and Kornfeld, D. M.:

Preparation of Large-Particle-Size Monodisperse Latexes in Space.

Polm. Materials Sci. Eng., Vol. 54, pp. 587-592, 1986.

(9) Vanderhoff, J. W., Ei-Aasser, M. S., Kornfeld, D. M., Micale,

F. J., Sudol, E. D., Tseng, C.-M., and Sheu, H.-R.: The First

Products Made in Space: Monodisperse Latex Particles. In

Materials Processing in the Reduced Gravity Environment of Space,

Fall Meeting, Materials Research Society, December 1-6, 1986,

Boston, Massachusetts, Mat. Res. Soc. Symp. Proc., Vol. 87, 1987.

(i0) Vanderhoff, J. W., Ei-Aasser, M. S., Micale, F. J., Sudol,

E. D., Tseng, C.-M., Sheu, H.-R., and Kornfeld, D. M.: The First

Products Made in Space: Monodisperse Latex Particles. AIAA 25th

Aerospace Sciences Meeting, January 12-15, 1987, Reno, Nevada,

AIAA Paper #87-0389.

(ii) Input received from Co-Investigator D. Kornfeld, September

1989 and July 1993.

For additional publications, see Vanderhoff, STS-004

(publications listing).

Contact(s):

Dr. John W. Vanderhoff

Emulsion Polymers Institute

Mountaintop Campus

iii Research Drive, Bldg. A.

Lehigh University

Bethlehem, PA 18015

Dale M. Kornfeld

ES76

NASA Marshall Space Flight Center, AL 35812
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Principal Investigator(s): Vanderhoff, J. W. (i)

Co-Investigator(s): Ei-Aasser, M. S. (2), Micale, F. J. (3),

Kornfeld, D. M. (4)

Affiliation(s): (1) Emulsion Polymer Institute, Lehigh Univer-

sity, Bethlehem, Pennsylvania; (2,3) Lehigh University, Beth-

lehem, Pennsylvania; (4) National Aeronautics and Space Ad-

ministration (NASA), Marshall Space Flight Center (MSFC),

Huntsville, Alabama

Experiment Origin: USA

Mission: STS Launch #4, STS-004 (STS OFT-4, Columbia)

Launch Date/Expt Date: June 1982

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Middeck Experiment, Crew Compartment

Processing Facility: Monodisperse Latex Reactor (MLR): four one-

foot-tall chemical reactors, each containing 100 milliliters of a

chemical latex forming mixture, housed in a single, two-foot tall

Experiment Apparatus Container (EAC, metal cylinder); reaction
time: 12 hours

Builder of Processing Facility: Reactors: General Electric Co.,

Valley Forge, Pennsylvania; Support Electronics Package (SEP):

Rockwell International, Downey, California

Experiment:

Monodisperse Latex Reactor (MLR-2)

This STS-004 experiment was the second in a series of investiga-

tions designed by Vanderhoff et al. to study the low-gravity

production of monodisperse polystyrene latex microspheres (see

Vanderhoff, STS-003).

The Monodisperse Latex Reactor (MLR), which had been previously

employed on STS-003 to produce latex particles, was reused during

this STS-004 mission. The STS-004 latex production experimental

procedure was essentially the same as that of the earlier STS-003

mission (see Vanderhoff, STS-003 for details of the MLR and a

description of the procedure).

During the STS-004 experiment, four space-based polymerizations

(designated latex number 5, number 6, number 7, and number 8)

were carried out using seeds of 5.5 microns. The monomer-polymer

ratios for flight latexes 5, 6, 7, and 8 were 2:1, 4:1, 5.7:1,

and 6.2:1, respectively. The pre-processing and processing stir-

ring rates (both 13 rpm) were the same for all four experiments.

Post-flight examination of (i) the returned liquid mixtures and

(2) the recorded experimental data revealed that "All four

latexes were incompletely polymerized as evidenced by the odor of

styrene; moreover, the data tape cassette yielded only meaning-
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less numbers for the dilatometer volume and temperature readings.

A dc voltage converter in the SEP had failed, with the consequent

failure of other electronic components, so that the temperature
time variation of the monomer-swollen latexes was not known and

the voltage signals to the data tape cassette were inconsistent

and non-representative." (12, p. 5)

The degree of conversion of the partially polymerized latexes as

determined by gravimetric measurements was reported to be 48%-

67%; the degree of conversion as determined by ultraviolet absor-

bance of isooctane was 54%-73%. Optical microscopy indicated the

particles were monodisperse with only a few offsize (larger) par-

ticles. The size of the particles was as expected from the

stoichiometry of the seeded polymerizations: (i) 7.2 microns for

the 2:1 monomer-polymer ratio, (2) 8.6 microns for the 4:1 ratio,

(3) 9.5 microns for the 6:1 ratio, and (4) 10.4 microns for the

8:1 ratio. The residual monomer within the latex particles

rendered them useless as calibration standards. "Moreover,

completion of the polymerizations on Earth gave a broader par-

ticle size distribution and an increased number of larger offsize

particles, the result of further coalescence of e monomer-swollen

particles during polymerization." (12, p. 5) <Note: The Prin-

cipal Investigator deliberately completed the polymerization on

Earth by heating the four samples to 70 °C in order to determine

the degree of monodispersity.>

Key Words: Technological Experiments, Emulsion Polymerization,

Monodisperse Latex Particles, Polystyrene Latex Microspheres,

Spheres, Suspension of Particles, Stirring of Components, Shear

Forces, Nucleation, Particle Growth, Particle Size Distribution,

Sedimentation, Isothermal Processing, Buoyancy Effects

Diminished, Thermal Control, Contained Fluids, Piston System,

Vacuum, Incomplete Sample Processing, Hardware Malfunction,

Processing Difficulties

Number of Samples: four

Sample Materials: Latex #5: seed diameter = 5.5 microns at 2/1

monomer/polymer ratio; Latex #6: seed diameter = 5.5 microns at

4/1 monomer/polymer ratio; Latex #7: seed diameter = 5.5 microns

at 5.7/1 monomer/polymer ratio; Latex #8: seed diameter 5.5

microns at 6.2/1 monomer/polymer ratio

Container Materials: stainless steel
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Experiment/Material Applications:

See Vanderhoff, STS-003

References/Applicable Publications:

(i) Sudol, E. D., Micale, F. J., Ei-Aasser, M. S., and Vander-

hoff, J. W.: The Development and Testing of a Space Flight

Dilatometer/Reactor. Rev. Sci. Instruments Vol. 57, pp. 2332-
2338 (1986) .

(2) Input received from Co-Investigator D. Kornfeld, September
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(6) STS-6 Sixth Space Shuttle Mission, April 1983, NASA Press
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(i0) Sudol, E. D., Ei-Aasser, M. S., and Vanderhoff, J. W.:
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publication in J. Polym. Sci., 1986. <Note: The current status of
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(ii) Sudol, E. D., Ei-Aasser, M. S., and Vanderhoff, J. W. :

Kinetics of Successive Seeding of Monodisperse Polystyrene
Latexes II. Azo Initiators with and without Inhibitors. Ac-

cepted for publication in J. Polym. Sci., 1986. <Note: The cur-

rent status of this document is unclear at this time.>

(12) Vanderhoff, J. W., Ei-Aasser, M. S., Micale, F. J., Sudol,

E. D., Tseng, C.-M., Sheu, H.-R., and Kornfeld, D. M.: The First

Products Made in Space: Monodisperse Latex Particles. AIAA 25th
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Contact(s):
Dr. John W. Vanderhoff

Emulsion Polymers Institute

Mountaintop Campus

iii Research Drive, Bldg. A.

Lehigh University
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Dale M. Kornfeld
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NASA Marshall Space Flight Center, AL 35812
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Principal Investigator(s): Vanderhoff, J. W. (1)

Co-Investigator(s): Ei-Aasser, M. S. (2), Micale, F. J. (3),

Kornfeld, D. M. (4)

Affiliation(s): (1) Emulsion Polymer Institute, Lehigh Univer-

sity, Bethlehem, Pennsylvania; (2,3) Lehigh University, Beth-

lehem, Pennsylvania; (4) National Aeronautics and Space Ad-

ministration (NASA), Marshall Space Flight Center (MSFC),

Huntsville, Alabama

Experiment Origin: USA

Mission: STS Launch #6, STS-006 (STS 31-B, Challenger)

Launch Date/Expt Date: April 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Middeck Experiment, Crew Compartment

Proaessing Facility: Monodisperse Latex Reactor (MLR) (same ap-

paratus as employed on STS-003 and STS-004, but now with (i) a

cooling fan installed in the Support Electronics Package (SEP),

(2) some electronic modifications, and (3) a software change to

increase processing to 20 hours.

Builder of Processing Facility: Reactors: General Electric Com-

pany, Valley Forge, Pennsylvania; Support Electronics Package

(SEP): Rockwell International, Downey, California

Experiment:

Monodisperse Latex Reactor (MLR-3)

This STS-006 experiment was the third in a series of investiga-

tions designed by Vanderhoff et al. to study the low-gravity

production of monodisperse polystyrene latex microspheres (see

Vanderhoff, STS-003, STS-004).

The Monodisperse Latex Reactor (MLR), which had been previously

employed on both STS-003 and STS-004 to produce latex particles,

was reused during this STS-006 mission. The STS-006 latex

production experimental procedure was essentially the same as

that of the earlier STS-003 mission (see Vanderhoff, STS-003).

Specifically, during the STS-006 experiment, four space-based

polymerization experiments were conducted using different seed

sizes and monomer-polymer ratios: latex number 9 used 5.6 micron

seeds and a monomer/polymer ratio of 2:1; latex number i0 used

5.6 micron seeds at a monomer/polymer ratio of 4:1; latex number

ii used 5.6 micron seeds at a monomer/polymer ratio of 6:1; latex

number 12 used 0.19 micron seeds at a monomer/polymer ratio of

2:1. (Latex number 12 was a recipe repeat of latex number 4

which was processed during the STS-003 experiment. Further, this

0.19 micron sized seed experiment used a potassium persulfate in-

itiator and a sodium bicarbonate buffer (see Reference (9) for

recipe details).) The pre-processing and processing stirring

18-199



speeds (both 13 rpm) were the same for all four experiments.

Post-flight examination of the returned liquid mixtures revealed

that the "Flight latex i0 displayed a strong odor of styrene;

this sample had not polymerized owing to a broken wire in the

heating circuit. It is not known whether the wire broke before

or during the launch; however, the reactor functioned satisfac-

torily in the ground-based test polymerizations carried out two

weeks before the flight." (9, p. 5)

Examination of the remaining flight samples indicated a smaller

variation in size than the ground-based samples. Latex number 9

contained 7.9 micron diameter spheres, latex number ii contained

I0.0 micron diameter spheres, and latex number 12 spheres con-

tained 0.26 micron diameter spheres. Both flight latexes 9 and

ii were more uniform in size than the corresponding ground-based

samples. "Flight latex ii (9.96... [microns] diameter) was ac-

cepted by the National Bureau of Standards as a Standard

Reference Material and went on sale in July 1985, the first

product made in space for sale on earth. These particles were

also found to be more perfect spheres than the ground-based par-

ticles." (9, p. 5)

The conversion-time curves were similar for both flight and

ground-based latexes (this similarity was also indicated for the

STS-003 flight and ground-based latexes). The curves for latex

number 9 (both ground-based and flight) demonstrated a sig-

nificant upward deviation from linearity to non-linearity, in-
dicative of autoacceleration. Similar curves for latexes ii

showed nearly linear variations. "The failure of the curves for

latexes ii to show an upward deviation from linearity was at-

tributed to the sticking of the dilatometers or formation of

nitrogen bubbles before the polymerizations reached the autoac-

celeration stage." (9, p. 6) (Reportedly, decomposition of the

azo initiator liberates nitrogen gas; excess gas can form a

bubble in the fluid chamber. Since bubbles are compressible and

water is not, the employed volume compensation piston may not

move properly.) <Note: A general discussion on conversion-time

curves can be found under Vanderhoff, STS-003.>

Key Words: Technological Experiments, Emulsion Polymerization,

Monodisperse Latex Particles, Polystyrene Latex Microspheres,

Spheres, Suspension of Particles, Collisions, Sedimentation,

Stirring of Components, Shear Forces, Isothermal Processing,

Nucleation, Particle Growth, Particle Size Distribution, Buoyancy

Effects Diminished, Bubbles, Bubble Formation, Contained Fluids,
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Viscosity, Piston System, Volume Change, Volume Compensation, Air

Fan, Vacuum, Hardware Malfunction, Incomplete Sample Processing,

Processing Difficulties, Acceleration Effects, Rocket Vibrations

Number of Samples: four

Sample Materials: Monomer: styrene, water; Latex #9: seed

diameter = 5.6 microns at 2/1 monomer/polymer ratio; Latex #i0

seed diameter = 5.6 microns at 4/1 monomer/polymer ratio; Latex

#11: seed diameter = 5.6 microns at 6/1 monomer/polymer ratio;

Latex #12: seed diameter: 0.19 microns at 2/1 monomer/polymer

ratio; buffer (Latex 12 only): sodium bicarbonate; initiator

(Latex 12 only): potassium persulfate
Container Materials: stainless steel

Experiment/Material Applications:

See Vanderhoff, STS-003.

References/Applicable Publications:

In addition to the publications listed below, please refer to

Vanderhoff, STS-003 and STS-004 for listings of additional publi-

cations.

(i) Input received from Co-Investigator D. Kornfeld, September

1989 and July 1993.

(2) Kornfeld, D. M.: Monodisperse Latex Reactor (MLR) - A

Materials Processing Space Shuttle Middeck Payload. NASA TM-

86487, January 1985. (post-flight)

(3) STS-6 Sixth Space Shuttle Mission, April 1983, NASA Press

Kit, pp. 4 and 38-39. (preflight)

(4) STS-7 Seventh Space Shuttle Mission, June 1983, NASA Press

Kit, p. 51. (briefly discusses STS-6 successful results)

(5) "First Space Product Set to be Developed for Commercial Use."

NASA Activities, August 1984, Vol. 15, No. 8, pp. 5-6. (post-

flight)

(6) Monodisperse Latex Reactor (MLR). Application Payload

Projects, Spacelab Payload Project Office, Marshall Space Flight

Center, Huntsville, Alabama, 8 pp. (document developed by

Teledyne Brown Engineering)
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(7) Sudol, E. D., Ei-Aasser, M. S., and Vanderhoff, J. W.:

Kinetics of Successive Seeding of Monodisperse Polystyrene

Latexes I. Initiation via Potassium Persulfate. Accepted for

publication in J. Polym. Sci., 1986. <Note: The current status

of this document is unclear at this time.>

(8) Sudol, E. D., Ei-Aasser, M. S., and Vanderhoff, J. W.:

Kinetics of Successive Seeding of Monodisperse Polystyrene

Latexes II. Azo Initiators with and without Inhibitors. Ac-

cepted for publication in J. Polym. Sci., 1986. <Note: The cur-

rent status of this publication is unclear at this time.>

(9) Vanderhoff, J. W., Ei-Aasser, M. S., Micale, F. J., Sudol,

E. D., Tseng, C.-M., Sheu, H.-R., and Kornfeld, D. M.: The First

Products Made in Space: Monodisperse Latex Particles. AIAA 25th

Aerospace Sciences Meeting, January 12-15, 1987, Reno, Nevada,

AIAA Paper #87-0389.

Contact(s):

Dr. John W. Vanderhoff

Emulsion Polymers Institute

Mountaintop Campus

Iii Research Drive, Bldg. A.

Lehigh University

Bethlehem, PA 18015

Dale M. Kornfeld

ES76

NASA Marshall Space Flight Center, AL 35812
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Principal Investigator(s): Vanderhoff, J. W. (i)

Co-Investigator(s): Ei-Aasser, M. S. (2), Micale, F. J. (3),

Kornfeld, D. M. (4)

Affiliation(s): (1) Emulsion Polymer Institute, Lehigh Univer-

sity, Bethlehem, Pennsylvania; (2,3) Lehigh University, Beth-

lehem, Pennsylvania; (4) National Aeronautics and Space Ad-

ministration (NASA), Marshall Space Flight Center (MSFC),

Huntsville, Alabama

Experiment Origin: USA

Mission: STS Launch #7, STS-007 (STS 31-C, Challenger)

Launch Date/Expt Date: June 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Middeck Experiment, Crew Compartment

Processing Facility: Monodisperse Latex Reactor (MLR) (same ap-

paratus as employed on the earlier STS-006 flight but now with

minor electronics changes to permit slower stirring speeds)

Builder of Processing Facility: Reactors: General Electric Com-

pany, Valley Forge, Pennsylvania; Support Electronics Package

(SEP): Rockwell International, Downey, California

Experiment:

Monodisperse Latex Reactor (MLR-4)

This STS-007 experiment was the fourth in a series of investiga-

tions designed by Vanderhoff et al. to study the low-gravity

production of monodisperse polystyrene latex microspheres (see

Vanderhoff, STS-003, STS-004, STS-006).

The Monodisperse Latex Reactor (MLR), which had been previously

employed to produce latex particles on STS-003, STS-004 and STS-

006 was reused during this STS-007 mission. The STS-007 latex

production experimental procedure was essentially the same as

that of the earlier STS-003 mission (see Vanderhoff, STS-003).

During this STS-007 experiment, four space-based polymerization

experiments were conducted using different seed sizes and

monomer-polymer ratios: latex number 13 used 7.9 micron seeds at

a monomer/polymer ratio of 6:1; latex number 14 used 10.3 micron

seeds at a monomer/polymer ratio of 4:1; latex number 15 used

10.3 micron seeds at a monomer/polymer ratio of 6:1; latex number

16 used 10.3 micron seeds at a monomer/polymer ratio of 6:1.

Latexes 13 and 14 had the same pre-processing and processing

stirring speeds (both speeds 13 rpm); latex 15 had a stirring

speed of 13 rpm (pre-processing) and 6 rpm (processing); latex

16 had a stirring speed of 6 rpm (pre-processing) and 3 rpm

(processing). The seed latex used for latex 13 (7.9 microns in

diameter) had been produced in space during the STS-006 experi-

ment (see Vanderhoff, STS-006).
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Post-flight examination of the latex particles indicated that all

four flight experiments resulted in an excellent latex product.

The coefficients of size variation (defined as the standard

deviation divided by the number-average particle diameter) for

the flight materials were slightly smaller than for the seed par-

ticles and significantly smaller than those produced on Earth.

All flight latexes contained a small number of offsize (smaller

and larger) particles.

The conversion-time curves for flight latexes 13 and 16 were

practically the same as the corresponding ground-based materials.

The curves for flight latexes 14 and 15 were slightly above those

of the ground-based, control samples. "The leveling-off of the
conversion-time curves was attributed to the formation of a

nitrogen bubble or sticking of the dilatometer." (9, p. 6) This

characteristic was also observed for the latexes produced during

the STS-006 experiment. It was also reported that temperature

gradients existed between the cylinder wall and center of the

dilatometer. These gradients increased with increasing particle
size and monomer-polymer ratio.

Key Words: Technological Experiments, Emulsion Polymerization,

Monodisperse Latex Particles, Polystyrene Latex Microspheres,

Spheres, Collisions, Suspension of Particles, Stirring of Com-

ponents, Shear Forces, Nucleation, Particle Growth, Particle Size

Distribution, Sedimentation, Thermal Gradient, Buoyancy Effects

Diminished, Bubbles, Bubble Formation, Contained Fluids, Vis-

cosity, Piston System, Volume Compensation, Volume Change, Vacuum

Number of Samples: four

Sample Materials: Monomer: styrene, water; Latex #13: seed

diameter = 7.9 microns at 6/1 monomer/polymer ratio; Latex #14:

seed diameter = 10.3 microns at 4/1 monomer/polymer ratio; Latex

#15: seed diameter = 10.3 microns at 6/1 monomer/polymer ratio;

Latex #16: seed diameter: 10.3 microns at 6/1 monomer/polymer
ratio

Container Materials: stainless steel

Experiment/Material Applications:

See Vanderhoff, STS-003.
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References/Applicable Publications:

(i) Input received from Co-Investigator D. Kornfeld, September

1989 and July 1993.

(2) Kornfeld, D. M.: Monodisperse Latex Reactor (MLR) - A
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86487, January 1985. (post-flight)

(3) STS-7 Seventh Space Shuttle Mission, June 1983, NASA Press

Kit, pp. 51-52.
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NASA Activities, August 1984, Vol. 15, No. 8, pp. 5-6. (post-
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Center, Huntsville, Alabama, 8 pp. (document developed by

Teledyne Brown Engineering)
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flight)

(7) Sudol, E. D., Ei-Aasser, M. S., and Vanderhoff, J. W. :

Kinetics of Successive Seeding of Monodisperse Polystyrene

Latexes I. Initiation via Potassium Persulfate. Accepted for

publication in J. Polym. Sci., 1986. <Note: The current status of
this document is unclear at this time.>

(8) Sudol, E. D., Ei-Aasser, M. S., and Vanderhoff, J. W.:

Kinetics of Successive Seeding of Monodisperse Polystyrene

Latexes II. Azo Initiators with and without Inhibitors. Ac-

cepted for publication in J. Polym. Sci., 1986. <Note: The cur-
rent status of this document is unclear at this time.>

(9) Vanderhoff, J. W., Ei-Aasser, M. S., Micale, F. J., Sudol,

E. D., Tseng, C.-M., Sheu, H.-R., and Kornfeld, D. M.: The First

Products Made in Space: Monodisperse Latex Particles. AIAA 25th

Aerospace Sciences Meeting, January 12-15, 1987, Reno, Nevada,

AIAA Paper #87-0389.

See Vanderhoff, STS-003 and STS-004 for listings of additional

publications.
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Dr. John W. Vanderhoff

Emulsion Polymers Institute

Mountaintop Campus

Iii Research Drive, Bldg. A.

Lehigh University
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Dale M. Kornfeld

ES76

NASA Marshall Space Flight Center, AL 35812
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Principal Investigator(s): Vanderhoff, J. W. (1)

Co-Investigator(s): Ei-Aasser, M. S. (2) , Micale, F. J. (3),

Kornfeld, D. M. (4)

Affiliation(s): (1) Emulsion Polymer Institute, Lehigh Univer-

sity, Bethlehem, Pennsylvania; (2,3) Lehigh University, Beth-

lehem, Pennsylvania; (4) National Aeronautics and Space Ad-

ministration (NASA), Marshall Space Flight Center (MSFC),
Huntsville, Alabama

Experiment Origin: USA

Mission: STS Launch #10, STS-011 (STS 41-B Challenger)

Launch Date/Expt Date: February 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: Middeck Experiment, Crew Compartment

Processing Facility: Monodisperse Latex Reactor (MLR) (same ap-
paratus as used on STS-007)

Builder of Processing Facility: Reactors: General Electric Com-

pany, Valley Forge, Pennsylvania; Support Electronics Package
(SEP): Rockwell International, Downey, California

Experiment:

Monodisperse Latex Reactor (MLR-5)

This STS-011 experiment was the fifth in a series of investiga-

tions designed by Vanderhoff et al. to study the low-gravity

production of monodisperse polystyrene latex microspheres (see

Vanderhoff, STS-003, STS-004, STS-006, STS-007).

The Monodisperse Latex Reactor (MLR), which had been employed

during the previous experiments initiated by Vanderhoff, was

reused during the STS-011 mission. The STS-011 latex production

experimental procedure was essentially the same as that of the

earlier STS-003 mission (see Vanderhoff, STS-003).

During this STS-011 experiment, four polymerization experiments

were conducted using different seed sizes and monomer-polymer

ratios: latex number 17 contained seeds of 17.8 microns and had

a monomer/polymer ratio of 5:1; latex number 18 contained seeds

of 17.8 microns and had a monomer-polymer ratio of 5:1; latex

number 19 contained seeds of 10.3 microns and had a monomer-

polymer ratio of 6:1; latex number 20 contained seeds of 10.3

microns and had a monomer-polymer ratio of 6:1. The seed latexes

used for flight latexes 17 and 18 (17.8 microns in diameter) had

been produced in space during the STS-007 experiment (see Vander-

hoff, STS-007). Latexes 17 and 19 had pre-processing and

processing stirring speeds of 13 rpm and 6 rpm, respectively.

Latexes 18 and 20 had pre-processing and processing stirring

speeds of 6 rpm and 3 rpm, respectively.
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Reportedly, after the shuttle landed and "For several hours

before unloading, the MLR was inverted periodically to redisperse

the settled latex particles. When the stirrers were turned on,

the movement of the flight latex 19 stirrer was restricted;

therefore, it was turned off immediately; the dilatometer had a

broken stirrer-shaft shear-pin and it contained a mass of

coagulum between one side of the stirrer blade and the wall. It

is not known whether the formation of coagulum stalled the stir-

rer and broke the shear pin or the failure of the shear pin

caused the formation of coagulum; flight latex 20, which was

identical except for the stirring rates, contained no coagulum,

yet failure analysis of the broken shear pin [from flight latex

19] showed no evidence of fatigue failure." (9, p. 6) It was

also reported that no ground-based control experiments were

carried out because earlier experiments (STS-006 and STS-007) in-

dicated that "[on the ground]...the coagulum increased with in-

creasing particle size so strongly that the valuable seed latex

would have been wasted." (9, p. 6)

All of the flight latexes contained offsize particles (smaller

and larger). "The smaller offsize particles were removed by

repeated sedimentation-decantation. The numbers of offsize

larger particles determined by optical microscopy were about

twice those of the seed latexes." (9, p.9) <Note: The intent was

to grow each existing large seed ball to a larger size without

nucleating a new crop of submicron-size (offsize) balls. In this

case, a new crop of such balls formed (see Vanderhoff, STS-003,

for additional information on such particle nucleation).>

The product particle sizes were (i) 30.4 microns for latex 17,

(2) 30.9 microns for latex 18, (3) 18 microns for latex 19, and

(4) 19.4 microns for latex 20. "Flight latexes 17 and 18 (30

microns) were accepted by the National Bureau of Standards as a

Standard Reference Material, the second product made in space for

sale on earth. These particles were also found to be more per-

fect spheres than the ground-based particles." (9, p. 6)

The conversion-time curves for all the flight latexes virtually

coincided. Data from latexes 17 and 18 showed a slightly greater

deviation (upward) from linearity than latexes 19 and 20,

"...which was attributed to the higher monomer-polymer ratio

[latexes 19 and 20] and hence lower viscosity delaying the onset

of autoacceleration." (9, p. 6)

Results from all of the low-gravity MLR experiments (latexes 1-

20) confirmed the original rationale of the experiments:

(i) Flight polymerizations resulted in negligible amounts of

coagulum compared to the significant amounts in ground-based ex-

periments.
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(2) The latexes produced in space had a narrower particle size
distribution than those produced on Earth.

(3) The particles from the low-gravity experiments were more
spherical than those produced on Earth.

(4) The number of offsize larger particles was greater for the
ground-based latexes than for the flight latexes.

(5) Completion of the polymerization of the partially polymerized
STS-004 low-gravity latexes resulted in a broadened particle size
distribution and more offsize larger particles.

(6) The polymerization rates, within experimental error, were the
same in space as on Earth.

Key Words: Technological Experiments, Emulsion Polymerization,
Monodisperse Latex Particles, Polystyrene Latex Microspheres,
Spheres, Sphericity, Suspension of Particles, Collisions, Stir-
ring of Components, Shear Forces, Sedimentation, Isothermal
Processing, Nucleation, Particle Growth, Particle Size Distribu-
tion, Coagulation, Buoyancy Effects Diminished, Viscosity, Con-

tained Fluids, Piston System, Volume Change, Volume Compensation,

Vacuum, Hardware Malfunction

Number of Samples: four

Sample Materials: Monomer: styrene, water; Latex #17: seed

diameter = 17.8 microns at 5/1 monomer/polymer ratio; Latex #18:

seed diameter = 17.8 at 5/1 monomer/polymer ratio; Latex #19:

seed diameter = 10.3 microns at 6/1 monomer/polymer ratio; Latex

#20: seed diameter 10.3 microns at 6/1 monomer/polymer ratio

Container Materials: stainless steel

Experiment/Material Applications:

See Vanderhoff, STS-003.

References/Applicable Publications:

(i) Input received from Co-Investigator D. Kornfeld, September

1989 and July 1993.
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(2) Kornfeld, D. M.: Monodisperse Latex Reactor (MLR) - A

Materials Processing Space Shuttle Middeck Payload. NASA TM-

86487, January, 1985. (post-flight)

(3) 41-B Tenth Space Shuttle Mission, February 1984, NASA Press

Kit, p. 30. (very brief summary)

(4) "First Space Product Set to be Developed for Commercial Use."

NASA Activities, August 1984, Vol. 15, No. 8, pp. 5-6. (post-

flight)

(5) Monodisperse Latex Reactor (MLR). Application Payload

Projects, Spacelab Payload Project office, NASA Marshall Space

Flight Center, Huntsville, Alabama, 8 pp. (document prepared by

Teledyne Brown Engineering; post-flight)

(6) Vanderhoff, J. W., Ei-Aasser, M. S., Micale, F. J., Sudol,

E. D., Tseng, C.-M., Silwanowicz, A., and Kornfeld, D. M.:

Preparation of Large-Particle-Size Monodisperse Latexes in Space.

J. Dispersion Sci. technology, Vol. 5, 1984, pp. 231-246. (post-

flight)

(7) Sudol, E. D., Ei-Aasser, M. S., and Vanderhoff, J. W.:

Kinetics of Successive Seeding of Monodisperse Polystyrene

Latexes I. Initiation via Potassium Persulfate. Accepted for

publication in J. Polym. Sci., 1986. <Note: The current status
of this document is unclear at this time.>

(8) Sudol, E. D., Ei-Aasser, M. S., and Vanderhoff, J. W.:

Kinetics of Successive Seeding of Monodisperse Polystyrene

Latexes II. Azo Initiators with and without Inhibitors. Ac-

cepted for publication in J. Polym. Sci., 1986. <Note: The cur-
rent status of this document is unclear at this time.>

(9) Vanderhoff, J. W., Ei-Aasser, M. S., Micale, F. J., Sudol,

E. D., Tseng, C.-M., Sheu, H.-R., and Kornfeld, D. M.: The First

Products Made in Space: Monodisperse Latex Particles. AIAA 25th

Aerospace Sciences Meeting, January 12-15, 1987, Reno, Nevada,

AIAA Paper #87-0389.

See Vanderhoff, STS-003 and STS-004 for additional publications.
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Emulsion Polymers Institute

Mountaintop Campus

111 Research Drive, Bldg. A.
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Principal Investigator(s): Peter, L. J. (i)

Co-Investigator(s}: Hatelid, Major J. E. (2)

Affiliation(s): (1) During STS-006: United States Air Force

Academy, Colorado Springs, Colorado, Currently: Columbus Air

Force Base, Mississippi; (2) During STS-006: Assistant Professor

of Astronautics, U.S. Air Force Academy, Colorado Springs,

Colorado, Currently: Unknown

Experiment origin: USA
Mission: STS Launch #6, STS-006 (STS 31-B, Challenger)

Launch Date/Expt. Date: April 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: College Student Experiment; NASA Get Away Special

(GAS) canister G-049
Volume of Canister 5.0 cubic feet

Location of canister: STS Payload Bay

Primary Developer/Sponsor of G-049: The United States Air Force

Academy, Colorado Springs, Col_ado

Processing Facility: Plexiglas "¢' box configured with copper anode

and copper cathode.

Builder of Processing Facility: Unknown

Experiment:

Electroplatinq

On Earth, gravitational forces dictate the distribution of metal

during electroplating. In space, a more even plating of metal

may be possible.

This STS experiment was one of six investigations housed within

the G-049 Get Away Special canister on STS-006. Four other ex-

periments (of the six) were applicable to this data base (see

Amidon, STS-006 (Chapter 14); Gross, STS-006 (Chapter 18); Neel,

STS-006 (Chapter 4); Streb, STS-006 (Chapter 14)). The specific

objective of the electroplating experiment was to evenly plate

one metal (ionically) on to another metal.

<Note: Brief descriptions of the experimental setup were

provided in Reference (i) (a document published prior to the

launch of STS-006) and Reference (2) (a document published after

the return of the shuttle). Because Reference (2) did not verify

all of the vital information provided in Reference (i), the ac-

tual experimental setup is unclear. However, it appears that

prior to launch, a copper rod (anode), suspended w_hin a copper

cylinder (cathode) was placed inside a Plexiglas _¢" box filled

with an electrolyte solution (0.5 molar copper sulfate).>

During the mission, an electrical current was applied across the

solution.
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<Note: Although Reference (2) indicated that sometime during the

mission the solution would freeze (and provisions had been made

to handle the accompanying volume increase), the reference did

not specifically state why the solution would freeze. In addi-

tion, this reference indicated that a heater was used during the

experiment, but did not detail why the apparatus was used. Thus,

it was presumed that (i) the solution would freeze in the cold

payload bay and (2) the solution would have to be warmed by the
heater.>

The experimental results, as reported were somewhat unclear: "In

orbit, the solution did freeze (the heater did not work as

expected) and electroplating did result from a current across the

solution; however, the magnitude of the electroplating was of the

level of two hours, not the hoped-for two days. The major con-

clusion was that electroplating can occur in [a] vacuum or

gravity-free environment."

No further information could be located which described this ex-

periment.

Key Words: Technological Experiments, Electroplating, Plating,

Metals, Anode, Cathode, Electrodes, Electrolyte Solution, Coated

Surfaces, Electric Field, Contained Fluids, Volume Compensation,

Volume Change, Freezing, Vacuum, Processing Time Not As Long As
Planned

Number of Samples: one

Sample Materials: copper anode and cathode; electrolyte solution:

0.5 molar copper sulfate

(Cu*S*)

Container Materials: Plexiglas TM box

Experiment/Material Applications :

Direct applications of this research were not cited in the avail-

able publications. However, it is suspected that the

electroplating was studied to determine if more homogeneous sur-

face coatings (with improved characteristics) could be created in

the low-gravity environment.
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References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS-6, JSC-17645 Annex

STS-6, December 3, 1982. (very short description; preflight)

(2) Swan, P. and Worsowicz, C.: The Eaglets have Flown. Space

Education, Vol. 1, No. 7, May 1984, pp. 317-319. (post-flight)

(3) STS-6 Getaway Specials, NASA News, NASA GSFC, November 24,

1982. (preflight)

(4) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report # EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(5) NASA STS-6 Sixth Space Shuttle Mission Press Kit, April 1983,

pp. 41-43. (preflight)

Contact(s):

Lawrence Joseph Peter

37th Flying Training Squadron

DOTOA

Columbus Air Force Base, MS 39701
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Principal Investigator(s): Pan, C.H.T. (1), _ Gause, R. L. (2),

Whitaker, A. F. (3)

Co-Investigator(s): Unknown

Affiliation(s): (1) Department of Mechanical Engineering, Colum-

bia University, New York; (2,3) National Aeronautics and Space

Administration (NASA), Marshall Space Flight Center (MSFC),

Huntsville, Alabama

Experiment Origin: USA

Mission: STS Launch #9, STS-009 (STS 41-A, Spacelab i: Columbia)

Launch Date/Expt. Date: November 1983

Launched From: NASA Kennedy Space Center, Florida

Payload Type: STS Spacelab Facility, Spacelab Rack, Rack Number

#7
Processing Facility: Fluids Wetting and Spreading (FWS) Module

Builder of Processing Facility: Unknown

Experiment:

Tribological Experiments in Zero Gravity (INT011)

The wetting and spreading of a liquid over a solid surface is

governed by both gravity-dependent and gravity-independent

forces. In space, the gravity-dependent forces are greatly

reduced, thus facilitating the study of wetting phenomenon con-

trolled by interracial and capillary forces.

This Spacelab 1 experiment was designed to study the wetting,

spreading and operational behavior of bearing lubricants under

low-gravity conditions. The experiment consisted of two major

investigations: (i) The Fluid Wetting and Spreading Study (FWS)

and (2) The Journal Bearing Study. Details of these two inves-

tigations are discussed separately within this experiment sum-

mary. <Note: It appears that all of the equipment required for

these two investigations was contained within a drawer in

Spacelab Rack #7 (including a camera, accelerometer, power

supply, wetting surfaces, rotor, etc.). See Reference (4) for a

schematic of the drawer layout.>

<Note: At the time this experiment summary was prepared,

Reference (i) was the only document detailing postflight results

which could be obtained. These results are reproduced below al-

most in their entirety because the information as written was

difficult to follow and no accompanying photographs of the

surfaces/fluid-wetting accompanied the results.>
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The Fluid and Wetting Study

The useful life of a ball bearing is often dependent on the wet-

ting and spreading behavior of the bearing lubricant on the bear-

ing. The fluid wetting and spreading study (FWS) addressed the

behavior of a lubricant drop on various surfaces.

The description of the experimental apparatus, employed fluids,

and employed surfaces was reported as follows: "The FWS module

is a mechanized fluid-dispensing device. A separate unit is used
for each of four selected test fluids. Each module contains

three geometrically identical surface specimens. Twelve fluid-

surface combinations were used during the Spacelab 1 flight." (I,

p. 202)

"The study was conducted by photographing the wetting and spread-

ing process as soon as the test fluid "surfaces" on the specimen.

In each test sequence, approximately 24 _i of the test fluid was

displaced through the central hole of each test specimen. Film-

ing started at 24 frames per second for 8 seconds, then changed

to one frame per second for 8 minutes. All solid specimens were

made of 440C stainless steel with various finishing and treatment

conditions .... An oblique mirror beside each specimen showed the

side profile." (i, p. 202)

Spreading and wetting results of only one of the test fluids were

presented in the available references: "Cinematographic records

of wetting and spreading of SRG-10 [paraffinic] oil were analyzed

by measuring the mean radius of the wetted spot at various times.

Three phenomenological regimes were revealed by the spreading

history:

"i) Radius of each wetted spot grew to 0.15 cm in about 0.08

seconds with same rate on all three specimens.

"2) The wet radius on the barrier film-coated specimen

[fluoropolymer in solution with prefluorinated cyclic ether (MIL-

B-81744)] grew to 0.2 cm at the end of 0.8 second. The side

profile was roughly hemispheric. Wet radii on the other two

specimens increased to 0.3 cm in the same period.

"3) The wet radius on the barrier film-coated specimen stopped

changing. Spreading continued on the other two specimens, with

the wet radii reaching 0.50 and 0.38 cm, respectively, on the

prewetted and clean specimens in 440 seconds. The spot shape on

the prewetted specimen became oblong. A milli-g acceleration

disturbance in this period has been established.

"These results suggest that SRG-10 tends to wet and spread on a

clean solid surface similar to 440C stainless steel, that the
rate of the advance of the contact line on a clean surface is
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very slow, and that barrier film coating can effectively prevent

migration of the oil." (i, p. 202)

It was reported that analysis of other photographic records was

still underway.

The Journal Bearing Study

"In the normal functioning of an oil-lubricated journal bearing,

the clearance space is only partially filled. On the unleaded

side of the journal, natural drainage leaves behind a two-phase

film which is connected to an outboard void space. Stable opera-

tion of a liquid-lubricated journal bearing is known to be depen-

dent on the presence of the two-phase film." (i, p. 202)

This Spacelab journal bearing study investigated the morphology

of the two-phase film subjected to shearing forces between to

surfaces.

"The journal bearing module has a symmetrical, rigid rotor sup-

ported by a pair of experimental journal bearings. Three bearing

configurations were used to control various kinematic and

geometric parameters. In the first configuration, the bearings

were of plain cylindrical geometry, and the rotor could be fitted

with an unbalanced mass to yield an acceleration of 0.77 g. In

the second, the bearings were shaped by three centrally preloaded

arcs. In the third, the bearings were similar to those in the

first configuration, but one end of the shaft was also fitted

with a ball bearing to fix the operating eccentricity to three-

fourths of the radial clearance at that end.

"The experimental bearings are made of glass to permit viewing of

the two-phase film. Inclined mirrors on either side of each

bearing provide a full view. Encoding markers on the rotor are

sensed optically to monitor speed and to furnish triggering sig-

nals for the camera and synchronized stroboscopic lighting.

"The journal bearing module operates in the coast-down mode. The

drive mechanism is disengaged when the rotor speed reaches 600

rev/min. The camera drive is synchronized with the rotor so that
events related to unavoidable variations around the journal sur-

face remain unchanged in successive cinematographic views. Non-

contact proximity sensors along two mutually perpendicular axes

are used to monitor the radial motion of the rotor.

"The cinematographic records showed the following results, which

correspond to the three bearing configurations described above:
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"i) With the balanced rotor, a streamer structure which almost
wraps around the full circumference is seen. The appearance
fluctuates and repeats in approximately every other frame. This
suggests the presence of a one-half rotational rate oscillation.
The possibility of such a flow structure was previously postu-
lated .... This general appearance continues as the rotor slows
down to about 200 rev/min. The void content of the streamer
structure is somewhat reduced at the lower speeds. With the un-
balanced rotor, the two-phase morphology changes with speed. At
the higher speeds, there is a more pronounced circumferential
variation in the flow structure in each frame, but the frame-to-
frame fluctuation is less apparent. When the rotor speed falls
below about 300 rev/min, the general appearance reverts back to
that seen for the balanced rotor.
"2) Well-defined void regions are fixed to the three-arc
geometry. Occasionally, small isolated voids are seen going
around. There are no significant frame-to-frame fluctuations.

"3) The general appearance is similar to that in the second case,
except that fixed void regions are less extensive and are not
divided into three groups.

Data from the proximity sensors remain to be analyzed." (i, p.
202)

<Note: No other details concerning two experiments could be lo-

cated at this time. (Reference (3) could not be obtained at the

time this experiment summary was written.)>

Key Words: Technological Experiments, Tribology, Fluid Physics,

Bearings, Lubricants, Wetting, Wetting Kinetics, Surface Tension,

Free Surface, Meniscus Shape, Interracial Tension, Liquid Spread-

ing, Interface Physics, Capillary Forces, Capillary Flow,

Solid/Liquid Interface, Drops, Coated Surfaces, Liquid Transfer,

Liquid Expulsion Through a Small Orifice, Shear Forces, Sample

Rotation, Thin Films, Two-Phase System, Multiphase Media, Gaps,

Acceleration Effects, Acceleration Measurements

Number of Samples: not applicable

Sample Materials: Liquid Lubricants: SRG-10 Superrefined Paraf-

finic Oil; Bray 815Z, vacuum-distilled perfluoroalkyl polyether;

Apiezon Cn, molecularly distilled paraffinic; 90:10 blend of four

and five-ring polyphenyl ethers.

Surface Material: 440C stainless steel, three finishes (ground or

polished): clean, prewetted, and barrier film coated. Bearing

Material: Glass (see Reference (i) for details)
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Container Materials: not applicable

Experlment/Material Applications:

The specific reason why each fluid/surface combination was chosen

was not presented in the available references. However, it is

believed that the materials are typical for bearing applications.

References/Applicable Publicatlons:

(i) Pan, C.H.T., Gause, R. L., and Whitaker, A. F.: Tribology Ex-

periment in Zero Gravity. Science, Vol. 225, July 13, 1984, pp.

202-203. (post-flight)

(2) Chassay, R. P. and Schwaniger, A. : Low-G Measurements by

NASA. In Workshop Proceedings of Measurement and Characteriza-

tion of the Acceleration Environment On Board the Space Station,

August 11-14, 1986, Guntersville, Alabama, pp. 9-1 - 9-48.

(acceleration measurements)

(3) Todd, M. J.: Activities Report in Space Tribology Progress

Report 1984, Paris, 1985 16 pp, ESA CR(P)-2043. (post-flight)

(4) Pan, C.H.T., Whitaker, A. F., and Gause, R. L. : Wetting,

Spreading and Operating Characteristics of Bearing Lubricants in

a Zero Gravity Environment. In Spacelab Mission 1 Experiment

Descriptions - 2nd Edition, NASA TM-82448, November 1981, pp.

III-17 - III-20. (preflight)

Contact(s):

Dr. Coda H. T. Pan

Columbia University

Department of Mechanical Engineering

SW. Mudd Bldg, Room 236

New York, NY 10027

Ann F. Whitaker

ES01

NASA Marshall Space Flight Center, AL 35812
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Principal Investigator(s): Schweitzer, K. (i)

Co-Investigator(s): None

Affiliation(s): (1) Motoren und Turbinen Union

Germany

(MTU), Munich,

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #I0, STS-011 (STS 41-B, Challenger)

Launch Date/Expt Date: February 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: West German Get Away Special (GAS) MAUS Canister
DG-200A

Volume of Canister: 5.0 cubic feet

Location of Canister: The West German Shuttle Pallet Satellite

(SPAS-01A) (SPAS was a small experiment carrier removed from

the STS payload bay by the Canadian Remote Manipulator Arm, but

remained attached to the arm throughout the mission at a

position overhead about 5 to 10 feet from the forward payload

bay bulkhead. The satellite was returned to the cargo bay

before the shuttle's return.)

Primary Developer/Sponsor of DG-200A: The German Ministry of Re-

search and Technology (BMFT)/Messerschmitt-Boelkow-Blohm (MBB-

ERNO)

Processing Facility: Slip Casting Thermostat Furnace (aluminum

block into which 13 holes had been drilled to accommodate 13

samples)

Builder of Processing Facility: Motoren und Turbinen Union (MTU),

Munich, Germany

Experiment:

Slip Castinq I

During slip casting, a ceramic slurry is used to form complicated

shapes of hollow bodies. On Earth, the effects of gravity-

induced sedimentation and hydrostatic pressure limit the

materials which can be employed for the process. Specifically,

materials must have (i) constituents of equal densities or (2)

stabilizing additives. A stabilizing additive can have detrimen-

tal effects on the final properties of the cast material.

This Space Shuttle STS-011 experiment was the first in a series

of investigations designed by Schweitzer to study slip casting

under low-gravity conditions. The specific objective of the ex-

periment was to demonstrate (with model materials) that slip

casting of unstabilized slurries can be accomplished in a low-

gravity environment.

Prior to the shuttle mission, 13 flight samples were prepared.

<Note: It appears that the compositions of these samples were the

same as those employed on during Schweitzer's later experiment
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(see Schweitzer, STS-025). If so, the following description of

the samples would be correct:> Each sample consisted of a mix-

ture of ceramic and/or metal powders kneaded into paraffin wax.

The majority of the samples had either (i) only similar diameter,

micron-sized A1 powders (20, 40, or 60 vol.%); (2) a mixture of

two different micron-sized A1 particles (two different vol.%);

(3) only similar micron-sized AI203 powders (40 vol.%); (4) a

mixture of similar diameter, micron-sized A1 and AI203 powders

(similar vol.% of each); (5) mixtures of AI203 powders and (a) W

powders or (b) Mo powders (similar and different vol.%, similar

and different micron sizes). <Note: In addition to the powders

listed above, Reference (9) also mentions "3 mm Schlicker i, 3 mm

Schlicker 7, Schlicker 6, APK7, and Schlicker 12." These powders

are unfamiliar to the editors.> (Specific compositions of each

sample can be found in Reference (9).) Rods of these solid

slurries were pressed into cartridges against the ends of porous

ceramic disks. (The disks were mounted in the lower halves of

the cartridges.) The cartridges were configured in the Slip

Casting Thermostat furnace contained within the MAUS DG-200 Get

Away Special Canister (see References (4) and (6) for details of

the MAUS program).

During the STS-011 experiment, the Slip Casting Thermostat fur-

nace was to be used to process several samples. Details of the

expected melting and solidification procedure of the samples were

similar to those procedures realized during Schweitzer's later

experiment on STS-025.

It was reported that when a relay controlling the battery power

to the furnace failed to open and the controller of the safety

circuits sensed this problem, an emergency shutdown of the ex-

periment was invoked. Thus, the MAUS payload could not be ac-

tivated and no results from the experiment were attained. The

experiment was reflown on STS-025 (see Schweitzer, STS-025).

<Note: References (3) and (9) were not translated prior to the

preparation of this experiment summary; therefore, only small

portions of the information contained therein could be

evaluated. >

Key Words: Technological Experiments, Slip Casting, Casting, Melt

and Solidification, Model Materials, Slurry Solutions, Suspen-

sion, Density Difference, Particle Dispersion, Sedimentation,

Hydrostatic Pressure, Powder Metallurgy, Ceramics, Porous

Material, Hardware Malfunction, Sample Not Processed As Planned
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Number of Samples: thirteen

Sample Materials: Ceramic and metal powders with different grain

size kneaded into solid paraffin wax. See above Experiment sec-
tion for more details.

(AI*, AI*O*, W*, Mo*)
Container Materials: aluminum

(AI*)

Experiment/Material Applications:

Ceramic and metal powders in wax are models of unstabilized
slurries.

The specific uses of other (non-model) slip cast materials were

not discussed in the available publications.

References/Applicable Publications:

(i) Otto, G. H. and Baum, D.: Material Sciences Experiments Under

Microgravity Conditions with M*A*U*S. In 1985 Get Away Special

Experimenter's Symposium, October 8-9, 1985, Goddard Space Flight

Center, Greenbelt, Maryland, NASA CP-2401, pp. 101-108. (post-

flight)

(2) STS-II Cargo Systems Manual: SPAS OIA, JSC-19272 Basic Ver-

sion, NASA JSC, September 15, 1983. (preflight)

(3) Schweitzer, K., Lackermeier, R., and Track, W.: Schlicker-

giessen unter Schwerelosigkeit. Abschlussbericht, Reference No.

01QV320-ZK-SN-SLN 8802 (1987). (in German, English abstract)

(4) Otto, G. H.: Experimental Results from Automated MAUS

Payloads. IAF Paper #88-351 (1988).

(5) Input received from MAUS Project Scientist G. Otto (DLR,

Cologne), October 1989 and August 1993.

(6) Baum, D., Stolze, H., and Vits, P.: First Flight Data From

MAUS Payloads on STS 7 and STS ii. 35th Congress of the Interna-

tional Astronautical Federation, October 7-13, 1984, Lausanne,

Switzerland, IAF Paper #84-137, ii pp. (post-flight)

(7) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)
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(8) Input received from Principal Investigator K.

August 1993.

Schweitzer,

(9) Track, W., Schweitzer, K. K., and Lackmeier, R.: Schlicker-

giessen unter den Bedingungen der Schwerelosigkeit im Weltraum.

In Proceedings: H. Kolaska, H. Grewe, "Moderne Formgebungserfah-

ren, Pulvermetallurgie-Keramik" (Symposium, Hagen, November 14-

15, 1985), pp. 73-92, Meisenheim, 1985, ISBN 3-925543-00-7.

(post-flight, in German)

(i0) Feazel, M.: Shuttle Will Fully Deploy German Pallet. Avia-

tion Week & Space Technology, February 21, 1983, pp. 67-68.

contact(s):
Dr. K. Schweitzer

Motoren und Turbinen Union (MTU)

Deutsche Aerospace
Postfach 50 06 40 Dachauerstrasse 665

8000 M_nchen 50

Germany

Dr. G_nther H. Otto

Institute for Space Simulation

DLR

Linder H6he

D-51147 K61n

Germany
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Principal Investlgator(s): Schweitzer, K. (1)

Co-Investigator(s): None

Affiliation(s) : (1) Motoren und Turbinen Union (MTU), Munich,
Germany

Experiment Origin: Federal Republic of Germany

Mission: STS Launch #18, STS-025 (STS 51-G, Discovery)

Launch Date/Expt Date: June 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: West German Get Away Special (GAS) MAUS Canister

DG-200B (also designated as NASA Get Away Special (GAS) Canister
G-027)

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of DG-200B/G-027: The German Ministry
of Research and Technology (BMFT)/Messerschmitt-Boelkow-Blohm

(MBB-ERNO)

Processing Facility: Slip Casting Thermostat Furnace (aluminum

block into which 13 holes had been drilled to accommodate 13

samples)

Builder of Processing Facility: Motoren und Turbinen Union (MTU),
Munich, Germany

Experiment:

Slip Casting II

This STS-025 experiment was the second in a series of investiga-

tions designed by Schweitzer to study slip casting under low-

gravity conditions (see Schweitzer, STS-011). The specific ob-

jective of the experiment was to demonstrate (with model

materials) that slip casting of unstabilized slurries can be ac-

complished in a low-gravity environment.

Prior to the shuttle mission, 13 flight samples were prepared.

The samples consisted of a mixture of ceramic and/or metallic

powders kneaded into paraffin wax. The majority of the samples

had either (i) only similar diameter, micron-sized A1 powders
(20, 40, or 60 vol.%) ; (2) a mixture of two different micron

sized A1 particles (two different vol.%) ; (3) only similar

micron-sized AI203 powders (40 vol.%); (4) a mixture of similar

diameter, micron-sized A1 and AI203 powders (similar vol.% of

each); (5) mixtures of AI203 powders and (a) W powders or (b) Mo
powders (similar and different vol.%, similar and different

micron sizes). <Note: In addition to the powders listed above,

Reference (ii) also mentions "3 mm Schlicker i, 3 mm Schlicker 7,

Schlicker 6, APK7, and Schlicker 12." These powders are un-

familiar to the editors.> (Specific compositions of each sample

can be found in Reference (II).) Rods of these solid slurries

were pressed into cartridges against the ends of porous ceramic
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suction disks. (The disks were mounted in the lower halves of

the cartridges.) The cartridges were configured in the Slip

Casting Thermostat furnace contained within the MAUS DG-200B Get

Away Special canister (see References (3) and (7) for details of

the MAUS program).

At the initiation of the STS-025 experiment, the upper sections

of the cartridges were heated, melting the solid slurries. "Then

the slip casting process was started by additionally heating the

lower part of the cartridge containing suction bodies made of

porous ceramic. These [bodies] did slowly [partially] absorb

paraffin [via capillary forces of the porous ceramic] but not the

dispersed particles. The casting process was stopped by turning

off the furnace and cooling the samples. Solidification of the

paraffin did preserve the slip cast layers as well as the

residual slurries for later examination on Earth in respect to

their structure and particle distribution." (7, p. 5)

It was reported that the experiment was not performed as an-

ticipated. "Due to a temperature excess of the upper heater the

programmed temperature profile could not be executed properly

during the mission. To... [analyze] the impact of this malfunc-

tion on the samples the complete furnace including [the]

specimens has been examined by means of computer tomography. Un-

desired gas bubbles were formed and their presence disturbed the

solidification front. The slip castings could therefore not be

characterized in the desired manner. However, it could be shown

that particles are transported to form slip casting layers and

that this process can be performed under weightlessness with

unstabilized suspensions." (7, p. 5)

It was further reported: "Small particles are transported more

easily and are filling the interstices between the larger grains.

At particle concentrations > 60 vol.-%, no further densification

is observed." (6, abstract)

<Note: References (6) and (Ii) were not translated prior to the

preparation of this experiment summary; therefore, only small
portions of the information contained therein could be evaluated.

No other information (published in English) concerning this ex-

periment could be located at this time.>

Key Words: Technological Experiments, Slip Casting, Melt and

Solidification, Model Materials, Slurry Solutions, Suspension,

Sedimentation, Powder Metallurgy, Ceramics, Particle Dispersion,

Particle Distribution, Particle Transport, Grain Size, Bubbles,

Bubble Formation, Solidification Front Physics, Porous Material,
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Capillary Forces, Processing Difficulties, Thermal Environment
More Extreme Than Predicted

Number of Samples: thirteen

Sample Materials: Ceramic and metal powders with different grain

size kneaded into solid paraffin wax. See above Experiment sec-

tion for more details.

(AI*, AI*O*, W*, Mo*)
Container Materials: aluminum

(AI*)

Experiment/Material Applications:

See Schweitzer, STS-011.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS 51-G, JSC-17645 51-G,

Rev-A, March 20, 1985. (short description; preflight)

(2) Space Shuttle Mission 51-G Press Kit, June 1985. (preflight)

(3) Otto, G. H. and Baum, D.: Material Sciences Experiments Under

Microgravity Conditions with MAUS. In Goddard Space Center's

1985 Get Away Special Experimenter's Symposium, October 8-9,

1985, pp. 101-108, NASA CP-2401. (preflight)

(4) Otto, G. H. and Staniek, S.: Recent Results from MAUS

Payloads. In NASA Goddard Space Flight Center's 1986 Get Away

Special Experimenter's Symposium, October 7-8, 1986, NASA CP-

2438. (post-flight)

(5) Get Away Special... the first ten years. Published by God-

dard Space Flight Center, Special Payloads Division, the NASA GAS

Team, 1989, p. 29. (post-flight; very brief description)

(6) Schweitzer, K., Lackermeier, R., and Track, W.: Schlicker-

giessen unter Schwerelosigkeit. Abschlussbericht, Reference No.

01QV320-ZK-SN-SLN 8002 (1987). (in German, English abstract)

(7) Otto, G. H.: Experimental Results from Automated MAUS

Payloads. IAF Paper #88-351 (1988).

(8) Input received from MAUS Project Scientist G. Otto, October

1989 and August 1993.
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(9) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report # EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(i0) Input received from Principal Investigator K. Schweitzer,

August 1993.

(Ii) Track, W., Schweitzer, K. K., and Lackmeier, R.: Schlicker-

giessen unter den Bedingungen der Schwerelosigkeit im Weltraum.

In Proceedings: H. Kolaska, H. Grewe, "Moderne Formgebungserfah-

ren, Pulvermetallurgie- Keramik" (Symposium, Hagen, November 14-

15, 1985), pp. 73-92, Meisenheim, 1985, ISBN 3-925543-00-7.

(post-flight, in German)

contact(s):
Dr. K. Schweitzer

Motoren und Turbinen Union (MTU)

Deutsche Aerospace
Postfach 50 06 40 Dachauerstrasse 665

8000 M_nchen 50

Germany

Dr. G_nther H. Otto

Institute for Space Simulation
DLR

Linder H6he

D-51147 K61n

Germany
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Principal Investigator(s): Gadsden, M. (1)

Co-Investigator(s) : Megi11, L. R. (Payload Manager and

Contributor) (2), Busboso, E. (NASA Technical Manager) (3)

Affiliation(s): (1) University of Aberdeen, Aberdeen, Scotland;

(2) During STS-011: Utah State University Faculty, Logan, Utah,

Currently: ARME Enterprises, Hyrum, Utah; (3) National

Aeronautics and Space Administration (NASA), Goddard Space Flight

Center (GSFC), Greenbelt, Maryland

Experiment Origin: Scotland

Mission: STS Launch #i0, STS-011 (STS 41-B, Challenger)

Launch Date/Expt. Date: February 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) canister G-004
Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of this Experiment Within G-004:

University of Aberdeen, Scotland

Processing Facility: Capacitance micrometer with accompanying

vibration isolation system

Builder of Processing Facility: University of Aberdeen Workshop,

Aberdeen, Scotland

Experiment:

Stability of Materials - Residual Acceleration Measurements

This experiment was one of six investigations housed within the

G-004 Get Away Special canister during STS-OII. Three other ex-

periments (of the six) were applicable to this data base (see

Kitaura, STS-011 (Chapter 2); Thomas, S. (Chapter 12), STS-011;

Gadsden (Brownian Motion), STS-011 (Chapter 15)). Although the

objective of this experiment was not clearly presented, it ap-

pears that the investigation was designed to measure the very

low-gravity (residual) accelerations experienced by the space
shuttle.

<Note: Reference (3) gave a somewhat detailed summary of the ex-

perimental setup. Briefly, it stated that the setup consisted of

(i) two flat strips of beryllium copper mounted in a frame, (2)

detectors to record strip deflection, and (3) a vibration isola-

tion system to isolate the assembly from high levels of shuttle

vibration. The Principal Investigator indicated that this sum-

mary in Reference (3) was not correct, but did not then provide a

detailed setup description. Instead, he simply stated that a

capacitance micrometer was employed. No other information

describing the setup could be located at this time.>
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It was reported (and verified by the Principal Investigator) that

"During the flight, the deflection detectors and associated

electronics performed correctly, and deflections of the strips

within the design range of the instrument were indeed recorded.

Unfortunately, these appear to have the form of random vibration

at the level of about i/i0,000 of a millimetre- which is around

1,000 times larger than the smallest deflections it was hoped to

detect. At present it appears that, despite the success in

gathering data, the quality has been much reduced by this exces-

sive vibration-which possibly results from a failure of... [the]

anti-vibration system to deploy correctly in orbit." (3, p. 3)

<Note: As stated above, the nature of the deflectors and isola-

tion system was not clearly provided by the Principal Inves-

tigator.>

Reference (3) indicated that further analysis of the data was to

be performed and through this analysis the investigators hoped to

recover "...some meaningful deflection measurements and to diag-

nose the failure in the vibration isolation technique." (3, p. 3)

No further information describing the results of this experiment

could be located.

Key Words: Technological Experiments, Acceleration Measurements,

Vibration Isolation Systems, Acceleration Effects

Number of Samples: two

Sample Materials: Unclear, possibly flat strips of beryllium-

copper were used in the acceleration measurement device. <Note:

When queried, the Principal Investigator did not indicate that

this information was incorrect under the Sample Materials sec-

tion, although he had indicated that related information was in-

correct in the original experiment summary (see note above).>

Container Materials: not applicable

Experiment/Material Applications:

Although no applications of this research were cited in the ap-

plicable literature, residual (very low-gravity), very low

frequency accelerations are suspected to be highly detrimental to

several low-gravity fluids and materials processing initiatives.

Measurement of these types of small accelerations is a difficult

task and presents a challenge to investigators who wish to docu-
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ment just how low these accelerations (and their associated

frequencies) are.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS-II, JSC-17645 Annex

STS-II, December 2, 1983. (mention of experiment only;

preflight)

(2) Student Gas Program Internal Document, Utah State University,

Logan, Utah, 1984. (appears to be post flight)

(3) Letter from Michael Gadsden (Dept. of Natural Philosophy,

Aberdeen University, Aberdeen, Scotland) to L. Rex Megill (Utah

State University Student Gas Program Manager, Logan, Utah), which

included a short report by M. A. Player entitled: Get Away

Special; Stability of Materials Project-Summary of Results, July

ii, 1984. (preliminary results of University of Aberdeen's G-004

experiments) (post-flight)

(4) Getaway Special (GAS) Payloads. In Goddard Space Flight

Center's Engineering Newsletter, April 1984.

(5) STS-II Getaway Special Payload Descriptions, NASA News, NASA

GSFC, 1984.

(6) NASA Press Kit, Mission 41-B, p. 27.

(7) Ridenoure, R.: Gas Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR87-11, October 2, 1987. (Get Away Special canister mission

history)

(8) Input received from Experiment Investigator, July 1993.

Contact(s):

Dr. Michael Gadsden

Physics Unit

Aberdeen University

Aberdeen, AB9 2UE

Scotland

United Kingdom

Rex Megill

ARME Enterprises

96 South i00 West

Hyrum, UT 84319
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Principal Investlgator(s): Bijovet, J. (I), Newberry, R. (2)

Co-Investlgator(s): Unknown

Affillatlon(s): (1,2) Consortium for Materials Development in

Space (CMDS), University of Alabama, Huntsville, Alabama

Experiment Origin: USA

Mission: Consort 1 (Starfire Rocket)

Launch Date/Expt. Date: March 1989

Launched From: White Sands Missile Range, New Mexico

Payload Type: Sounding Rocket Experiment

Processing Facility: Two Accelerometers: (1) a NASA Marshall

Space Flight Center (MSFC) Miniature Electrostatic Accelerometer

(MEA) and (2) a University of Alabama in Huntsville Ac-
celerometer.

Builder of Processing Facility: (i) Although the MEA ac-

celerometer was on loan from MSFC, it does not appear to have

been built by MSFC. It was noted that the MEA employed 3 Kear-

foot accelerometers. (2) This accelerometer was built by R. New-

berry, University of Alabama, Huntsville, Alabama.

Experiment:

Accelerometer Measurements On Board Consort 1

The major objective of this Consort 1 experiment was to measure

the gravity levels at two different rocket locations during the

coasting phase of the rocket flight.

The rocket was configured with two accelerometer systems. The

first accelerometer system, provided by NASA, Marshall Space

Flight Center, was a derivative of a measuring system flown on

STS-007 (the Low-G Accelerometer System (LGAS)). The system con-

sisted of three accelerometers, placed in an orthogonal triad.

The triad arrangement allowed measurements in three axes. The

accelerometers were hinged pendulum, electrically restrained

measuring devices maintained at a constant temperature throughout

the flight to insure accelerometer stability. Theoretical
resolution of the output was quoted as i.i X i0-- g/bit change/s.

The second accelerometer system, provided by the Consortium for

Materials Development in Space (CMDS), was newly developed for

the Consort mission. The system consisted of "...a linear servo

instrument with a nonwearing elastic suspension .... The ac-

celerometer had an analog torque,balanced sensor with a fused

quartz flexure, a permanent magnet torquer, a capacitive pickoff

system, and self-contained servo electronics .... A temperature

sensor is incorporated in the instrument." (4, p.__49) Theoreti-

cal resolution of the output was quoted as 1 X i0 v g.
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Reportedly, "Acceleration measurements from the Consort flight

showed that operation of the experiments themselves generated ap-

preciable accelerations. This was expected from mixing motors

for experiments.., that ran only during the first several seconds

of free flight. However, motorized 35-mm cameras of standard

commercial design generated acceleration spikes up to 0.i g when

exposures were made and the film was advanced. Acceleration

measurements averaged over one second sho_ed that the long-period
acceleration environment attained the I0 -_ g goal." (2, p. 3-4)

"...a constant, anomalous force was detected providing a constant

acceleration throughout the low-g period of 7 X 10 -5 g in the

LGAS Y-axis and 8 X 10 -5 g in the Z-axis. In the X-axis this

force is below the measurement li_it (<10 -5 g). The composite

residual force vector was about i0 _ g .... (2, p. 3)

"Since the roll motion [of the rocket] was very small and the CM

[Center of Mass] was brought accurately to the center during spin

balancing, there is no doubt that the measured accelerations are

due to an anomalous force which could be residual off-gassing, an

air leak through the non-sealed doors, leaking thrusters, or some

other phenomenon.

"Finally, detection of the disturbances caused by operating the

high temperature sintering furnace [see J. E. Smith, Consort 1

(Chapter 13)] were recorded by the LGAS package. The composite

maximum force vector was close to the X-Z plane and was found to

be consistent with design." (5, pp. 47-48) <Note: it is not

clear what is meant by "consistent with design." No further in-

formation concerning this design was presented.>

Key Words: Technological Experiments, Acceleration Measurements,

Accelerations/Vibrations Produced by Onboard Equipment, Rocket

Motion, Acceleration Effects

Number of Samples: not applicable

Sample Materials: Accelerometer systems: "The first, the MEA Ac-

celerometer Package or LGAS (Low-G Accelerometer System) on loan

from NASA's Marshall Space Flight Center, uses three K_arfott
2412 accelerometers .... The output noise limit is 1 X i0 -_ g and
the bias u about 3 X 10 -5 g.

18-232



"The second, a unit assembled by the CMDS... uses three QA-700

accelerometers Although the bias uncertainty of this system

is high (8 X _U_ g maximum) this system permits detection of

rapidly oscillating disturbances .... " (5, p. 47)

Container Materials: not applicable

Experiment/Material Applications:

"The two accelerometer systems are installed at different loca-

tions to be used not only for the purposes of best estimation of

the gravity fields at different experiment locations but also for

purposes of obtaining redundancy and gaining experience." (4, p.

349)

References/Applicable Publications:

(i) Wessling, F. C., Lundquist, C. A., and Maybee, G. W.: Consort

1 Flight Results-A Synopsis. Presented at the IAF 40th Interna-

tional Astronauitcal Congress, October 7-13, 1989, M&laga, Spain,

IAF #89-439, 11 pp. To be published in Acta Astronautica, 1990.

(post-flight) <Note: The current publication status of this
document is unclear.>

(2) Lundquist, C. A. and Wessling, F. C.: Microgravity Inves-

tigations on Suborbital Rockets. Presented at the IAF 40th In-

ternational Astronautical Congress, October 7-13, M&laga, Spain,

IAF #89-425, 5 pp.

(3) Starfire i/Consort 1 Post Flight Data and Final Summary

Report, SSI-SF-600, April 28, 1989. (post-flight)

(4) Wessling, F. C. and Maybee, G. W.: Consort 1 Sounding Rocket

Flight. Journal of Spacecraft and Rockets, Vol. 26, No. 5,

September-October 1989, pp. 343-351. (preflight)

(5) Measurement of the Microgravity Environment. In Consortium

for Materials Development in Space, The University of Alabama in

Huntsville, Annual Report, Technical Section, October i, 1988-

September 30, 1989, pp. 47-48. (post-flight)

Contact(s):

Mr. Jan Bijovet, Mr. R. Newberry

The University of Alabama in Huntsville

Ofc., Director of Research

Research Institute Building

Huntsville, AL 35899
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Prinoipal Investlgator(s): Griffin, J. W. (1)

Co-Investigator(s): Boyd, W. C. (2)

Affiliation(s)= (1,2) National Aeronautics and Space Administra-

tion (NASA), Johnson Space Flight Center (JSC), Houston, Texas

Experiment Origin: USA

Mission= STS Launch #13, STS-017 (STS 41-G, Challenger)

Launch Date/Expt. Date: October 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: On orbit propellant (hydrazine) resupply
Processing Facility: Fluid transfer system and controls for han-

dling hazardous fluids on orbit

Builder of Processing Facility: Built internally at NASA Johnson
Space Center, Houston, Texas

Experiment:

On Orbital Refueling System (ORS) Flight Demonstration

"Orbital refueling of satellites and other space vehicles...

[may] be required for many future space programs. Many different

technologies are involved in developing the capability to provide

routine, safe, efficient on-orbit resupply of fluids: flow

measurement, tank gauging, coupling design and standardization,

etc. One key feature from a safety and operational standpoint

relates to the compressive heating of the ullage gas in the tank

as it is filled with liquid." (4, p. 3)

"The maximum temperature that the ullage gas can reach is that

associated with adiabatic compression .... In practice there will

be heat transfer from the gas to the vessel walls and surround-

ings, so the observed temperature rise will be less than that for

true adiabatic expansion.

"A major potential hazard arises when certain fuels are trans-

ferred in this manner. Hydrazine, commonly used as a fuel on

spacecraft, decomposes spontaneously around 200°F, with release

of a great deal of energy. If a small.amount of hydrazine ac-

cidentally leaked to the ullage side of the bladder, it could

easily be heated above 200 OF by too-rapid filling of the tank.

The ullage gas is heated by compression; it is cooled by heat

transfer to the tank walls and, in turn, to the surroundings."
(4, p. 4)

The Orbital Refueling System (ORS) was a low-cost flight experi-

ment fabricated and certified in-house at NASA Johnson Space Cen-

ter (JSC). The experiment laid the groundwork within NASA for

the development of orbital fluid resupply tankers. It initiated

and demonstrated the basic design concepts, operational

guidelines, and operational procedures for handling hazardous
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fluid transfers within the space shuttle payload bay by space-

suited astronauts.

The specific objectives of the experiment included:

"(a) Demonstrate extravehicular activity (EVA) tool/valve inter-

face for typical existing satellite propellant and pressurant

servicing valves that were not designed for in-flight reservic-

ing.

"(b) Demonstrate Orbiter-to-satellite interface for control of

fluid transfer from the Orbiter aft flight deck. Establish pro-

cedures for transferring hydrazine in the payload bay.

"(c) Establish procedures for crew EVA operations on a hydrazine

system with potential crew/Orbiter exposure to hydrazine.

"(d) Fabricate a system which, with minor modifications, could be

reflown to permit orbital propellant refueling of a satellite

such as LANDSAT. (4, p. 4-5)

The ORS was designed so that it would not pose any imminent

hazard to the crew or mission in the event of any two simul-

taneous component failures. Since it was evident that the low-

gravity heat transfer would have a major impact on the experi-

ment, the maximum possible adiabatic temperature increase was

calculated for each transfer. "Flow was stopped at the point

where a purely adiabatic compression would have raised the ullage

gas temperature 150 °F." (4, p. 5) (It was noted that obtaining

heat transfer data was not a primary objective of the experi-

ment.)

During the mission, liquid hydrazine fuel was transferred back

and forth from one spherical bladder tank to another using pres-

surized nitrogen as the driving force. The "...experiment in-

volved an extravehicular activity (EVA) during which the crew en-

gaged a hydrazine connection between a simulated tanker and a

simulation of a Landsat type propulsion system fluid interface.

The Landsat uses 'standard' propellant servicing couplings

designed for ground use. In order to safely connect the simu-

lated tanker fluid line to these 'standard' couplings, a special

set of tools.., and procedures were developed at Johnson Space

Center (JSC) to maintain a minimum of two seals between the crew

and propellant at all times during the mating cycle. <Note: Al-

though a detailed ORS fluid system schematic was provided in

Reference (2) a more detailed (written) description of the ORS

was not provided in the available References.> In addition to

the propellant interface engagement, a total of 904 pounds of

hydrazine was transferred in 6 transfers [285 minutes of flow]
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between the simulated tanker and spacecraft to demonstrate con-

trol of ullage gas recompression temperatures during reservic-

ing. <Note: The ullage is the amount that a container lacks of

being full.>

"The fluid reservicing system was controlled by the STS crew from

the orbiter aft flight deck using a dedicated ORS keyboard dis-

play unit (KDU) to communicate with the ORS computer .... This

was the first use of this type of control system that could

evolve into control of complex payloads without the overhead cost

and schedule associated with control thru <sic> the orbiter

general purpose computer (GPU)." (2, p. 2)

All transfers were carried out satisfactorily. Early analysis of

the flight data indicated that the ullage compression process was

much closer to an isothermal process than an adiabatic process.

(Reference (4))

Key Words: Technological Experiments, Propellant Transfer,

Refueling in Orbit, Liquid Transfer, Fluid Management, Contained

Fluids, Partially Filled Containers, Free Surface, Solid/Liquid

Interface, Liquid/Vapor Interface, Surface Tension, Heat Trans-

fer, Compressive Heating, Adiabatic Expansion, Space Shuttle

Safety

Number of Samples: one ORS system

Sample Materials: hydrazine
Container Materials: unknown

Experiment/Material Applications:

Hydrazine is often used as a spacecraft maneuvering propellant.

References/Applicable Publications:

(i) Input received from Experiment Investigator, July 1988.

(2) Griffin, J. W. : Background and Programmatic Approach for the

Development of Orbital Fluid Resupply Tankers .

AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference, Huntsville,

Alabama, June 16-18, 1986, AIAA Paper #86-1601, 7 pp. (post-

flight)
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(3) Input received from Principal Investigator J. W. Griffin,
August 1993.

(4) Kauffman, D.: An Analysis of Ullage Heat Transfer in the Or-

bital Refueling System. Internal Note, Johnson Space Center JSC-

20912, William C. Boyd, ed., October 21, 1985, 72 pp.

(5) Personal communication with Principal Investigator J. W.
Griffin, September 1993.

Contact(s):

John Griffin, William Boyd
NASA JSC

NASA Rd 1

EP4 Propulsion Branch

Houston, TX 77058
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Principal Investigator(s): McShane, J. W. (1)

Co-Investigator(s): GM Vacuum Coating Laboratory (2)

Affiliation(s): (1) Marshall-McShane Designs, Prescott, Arizona;

(2) Newport Beach, California

Experiment Origin: USA
Mission: STS Launch #13, STS-017 (STS 41-G, Challenger)

Launch Date/Expt. Date: October 1984

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) Canister G-038

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-03S: Joseph W. McShane, Prescott,

Arizona/GM Vacuum Coating Laboratory, Newport Beach, California

Processing Facility: Glass sphere connected to space vacuum

Builder of Processing Facility: Unknown, possibly GM Vacuum Coat-

ing Laboratory, Newport Beach, California (The glass spheres

used in the experiment were blown by the Schott Glass Works Com-

pany, Germany).

Experiment:

Art in Space: Sampling and Artistic Preservation of the Space

Vacuum

"For the first time since man first gazed at the stars and from

an earth-bound, one atmosphere, one-gravity perspective sought

understanding of the unfathomable heavens through his art...

[this experiment presented the opportunity] to make use of man's

technology as an extension of the artist's eye and hand to ven-

ture forth directly into the vacuum and weightlessness of space,

seeking understanding." (4, p. 120)

This experiment was one of three investigations housed within the

G-038 Get Away Special (GAS) canister on STS-017. The two other

experiments are described under McShane, STS-017 "Art in Space:

Coating of Glass Spheres by Vacuum Deposition Techniques"

(Chapter i0). The specific objective of the experiment reported

here was to sample the space vacuum environment and artistically

preserve that environment for return to Earth.

During the experiment, the interior of a 22000-mi glass sphere

was exposed to the space vacuum environment via a high vacuum

valve. "Over a three day period the interior of the sphere at-

tained an equilibrium with the vacuum of the shuttle orbit, be-

coming one with the vacuum of space. A copper tube connecting

the sphere to the valve was cold welded, permanently sealing the

sphere, creating the sculpture "S.P.A.C.E.". Attached to the

sphere is a Baratron capasitance [sic] manometer, [(]a vacuum

gauge capable of a digital reading of the vacuum forming the
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sculpture inside the sphere[)]." (5, p. 270)

It was noted by the investigator that "The sculpture "S.P.A.C.E."

is not the glass, but the outer space contained within. The

sphere serves only to keep the one-g atmosphere from intruding on

the space within, creating an anomaly of our common experience; a

sculpture to observe and stimulate wonder about the nature and

meaning of space, a sculpture to touch and know that only an 1/8"

of glass separates one from space." (5, p. 271)

<Note: Further details of the captured vacuum were not provided.>

Key Words: Technological Experiments, Art, Vacuum, Space Vacuum,

Sampling of Space Vacuum, Direct Exposure to Space Environment,

Welding

Number of Samples: one

Sample Materials: space vacuum

Container Materials: glass sphere

Experiment/Material Applications:

It appears that this arts-science payload was created to help man

experience the mysteries of space.

References/Applicable Publications:

(i) Cargo Systems Manual: GAS Annex for STS-II, JSC-17645 Annex

STS-11, December 2, 1983. (preflight; very short description)

(2) Space Shuttle Mission 41-G. NASA Press Kit, October 1984,

pp. 23-24. (preflight; very short description)

(3) Cargo Systems Manual: GAS Annex for STS 41-G. JSC-17645 41-

G, September 4, 1984. (short description; preflight)

(4) McShane, J. W. and Coursan, C. D.: An Artist's Exploration of

Space. In NASA Goddard Space Flight Center's 1984 Get Away Spe-

cial Symposium, NASA CP-2324, August 1-2, 1984, pp. 119-126.

(preflight)
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(5) McShane, J. W.: Art in Space--A Divergent Exploration. In

Goddard Space Flight Center's 1985 Get Away Special

Experimenter's Symposium, October 8-9, 1985, pp. 267-273. NASA

CP-2401. (post-flight)

(6) Shuttle Payload Creates Space Sculpture, AW&T, October 15,

1984.

(7) Get Away Special... the first ten years. Published by God-

dard Space Flight Center, Special Payloads Division, the NASA GAS

Team, 1989, p. 23. (post-flight; very brief description)

(8) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report # EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special Canister mission

history)

contact(s):

Joseph W. McShane
Marshall-McShane Designs

2150 Pine Drive

Prescott, AZ 86301
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Principal Investigator(s): Wishnow, H. (i), Kurtz, E. (2)

Co-Investigator(s): None

Affiliation(s): (1,2) Vertical Horizons, Inc., Flushing, New York

Experiment Origin: USA

Mission: STS Launch #24, STS-032 (STS 61-C, Challenger)

Launch Date/Expt. Date: January 1986

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) Canister G-481
Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay (carried in the standard

NASA GAS Bridge Carrier System)

Primary Developer/Sponsor of G-481: Vertical Horizons, Flushing,
New York

Processing Facility: Not specifically applicable. Raw, primed

and painted samples of linen canvas, concentrically rolled in

polyurethane foam were used as the experimental medium. Pressure

in canister maintained at one atmosphere. A thermograph powered

by 4 AA batteries recorded temperature changes inside canister at

hourly intervals.

Builder of Processing Facility: Not applicable

Experiment:

Reaction of Oil Paints on Canvas to Space Travel

The specific objective of this STS-032 experiment was to deter-

mine the effects of vibration, temperature change, reduced

gravity, and excessive g-stresses on fine arts materials.

Primed and unprimed linen samples, some of which were painted

with oil colors using a wide variety of pigments, were employed

as test materials. On Earth, the paints were applied using

traditional artistic methods, creating actual paintings similar

to those which may some day be transported or created on space
flights.

The samples were rolled between layers of polyurethane foam and

placed in the G-481 Get Away Special (GAS) canister. A ther-

mograph was inserted into the center of the roll to record tem-

perature changes within the can at hourly intervals.

After the 6-day mission, the samples were evaluated by several

techniques including X-ray and ultraviolet examination. The

following results were reported (2, p. 115):

"A. The linen and painted surfaces showed no sign of oxidation.*

B. The surfaces showed no accumulation of foreign substances.

C. The _urface laye[s were fully intact with no evidence of

cracking- or flaking- of the pigments.
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D. There was no sign of cupping or cleavage.*"

<Note: Terms followed by an asterisk (above) were further defined

in the report.>

Reportedly, "Temperature changes within the G. A. S. canister

were not recorded due to an error in the programming of the ther-

mograph." (2, p. 115)

The investigators concluded that no degradation was apparent and

that "...materials of the fine arts can be transported for

limited periods of time into space and returned safely." (2, p.

115)

Key Words: Technological Experiments, Art, Paint on Canvas, Reac-

tion of Oil Paints in Space, Coated Surfaces, Acceleration Ef-

fects, Oxidation, Surface Morphology, Surface Roughness, Hardware
Malfunction

Number of Samples: 15

Sample Materials: Unprimed Belgium linen (three samples), single-

primed Belgian linen (three samples), double-primed linen (three

samples), single-primed Belgian linen painted with oil colors

(three samples), double-primed Belgian linen painted with oil

colors (three samples). The atmosphere of the can was similar to

that of a typical spacecraft environment.

Contalner Materials: polyurethane foam in GAS canister

Experiment/Material Applications:

In anticipation of transportation and creation of fine art in

space, this experiment allowed examination of artist materials

packaged and exposed to the rigors of space flight.

References/Applicable Publications:

(i) Space Shuttle Mission 61-C, NASA Press Kit, December 1985, p.

17. (preflight)
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(2) Kurtz, E. and Wishnow, H.: The Transportation of Fine Arts

Materials Aboard the Space Shuttle Columbia. In the 1988 Get

Away Special Experimenter's Symposium, Cocoa Beach Florida, Sep-

tember 27-29, 1988, NASA CP-3008, pp. 113-119. (post-flight)

(3) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11, October 2, 1987. (Getaway Special Canister mission

history)

(4) Input received from Principal Investigator, H. Wishnow,

August 1989.

(5) Input received from Principal Investigator, E. Kurtz, June

1993.

Contact(s):

Howard Wishnow

Vertical Horizons, Inc.

6964 136th Street

Flushing, NY 11367

Ellery Kurtz

Vertical Horizons, Inc.

240 E. 6th Street

New York, NY 10003
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Principal Investigator(s): Casarez, C. (1)

Co-Investigator(s): Izquierdo, M. (Project Engineer) (2)

Affiliation(s): (1) During STS 51-G: Hanks High School, E1 Paso,

Texas, Currently: Unknown; (2) E1 Paso Natural Gas, E1 Paso,

Texas

Experiment Origin: USA

Mission: STS Launch #18, STS-025 (STS 51-G, Discovery)

Launch Date/Expt. Date: June 1985

Launched From: NASA Kennedy Space Center, Florida

Payload Type: High School Student Experiment

NASA Get Away Special (GAS) Canister G-034

Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-034: Texas High Schools (Ysleta

and E1 Paso Districts)/Dickshire Coors, E1 Paso, Texas

Processing Facillty: Liquid Dye Laser

Builder of Processing Facility: Unknown

Experiment:

Testinq of a Liquid Laser

During operation of a liquid laser either in space or on Earth,

(i) fluid "...is pushed through the optical cavity by means of a

mechanical pump system..." (i, p. 68) and then (2) "[t]uning of

the coherent beam is accomplished by the use of a prism or...

[diffraction] grating.., isolating only the part of the spectrum

to be studied .... " (i, p. 68)

This investigation was one of thirteen experiments housed within

the G-034 Get Away Special Canister during the STS-025 mission.

(Three other of the thirteen investigations are applicable to

this data base (see Foster, STS-025 (Chapter 2); M. Moore, STS-

025 (Chapter 8); Thurston, STS-025 (Chapter 18)).) The objective

of this experiment was to compare liquid laser operation in the

space environment with liquid laser operation on Earth.

Experimental system characteristics to be compared included a)

the temperature of the liquid laser and the pump area, "...b) the

condition of the beam in respect to color, intensity and

distortion; [and] c) the relative power output of the laser .... "

(1, p. 68) The expected experimental procedure (which was only

very briefly described in two sentences in Reference (1)) was

unclear: "Bring the temperature up to 0° C and maintain at O° C.

Then follow procedures on flow chart for liquid laser project."

(1, p. 63) <Note: An illustration of this flow chart was not

provided.>
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During the mission, a Plexiglas TM case, which enclosed another of

the investigations housed within the Get Away Special canister (a

seed germination experiment) broke "... spilling a

water/formaldehyde mixture inside the GAS can. Several seconds

later the batteries and/or controller shorted, ending all experi-

ments except... [a wicking of fluids experiment (See Foster, STS

025)] which had its own power supply and controller." (4, p. 34)

Key Words: Technological Experiments, Liquid Lasers, Liquid

Transfer, Liquid Leakage, Contamination Source, Battery Short

Number of Samples: Unknown; it appears that a single liquid laser

was to be evaluated.

Sample Materials: liquid dye laser (liquid and dye unspecified)
Container Materials: unknown

Experiment/Material Applications:

Reportedly, because the "...laser has many physical uses in

space..." (1, p. 63) characteristics of a liquid laser were to be
evaluated.

References/Applicable Publications :

(I) E1 Paso & Ysleta Schools Get Away Special Payload #34. In

Goddard Space Flight Center's 1984 Get Away Special

Experimenter's Symposium, NASA CP-2324, August 1-2, 1984, pp. 59-

68. (preflight)

(2) Cargo Systems Manual: Gas Annex for STS 51-G, JSC 17645 51-

G, Rev. A, March 20, 1985. (very short description; preflight)

(3) NASA Space Shuttle Mission 51-G Press Kit.

(very short description; preflight)

June 1985, p. 20.

(4) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Company, Technical Report #EAC-

TR-RWR 87-11, October 2, 1987. (Getaway Special Canister mission

history)

(5) G-034 Payload Accommodations Requirements, NASA Goddard Space

Flight Center, 1985.
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Contact(s):

Mike Izquierdo

E1 Paso Natural Gas

P.O. Box 1492

E1 Paso, TX 79978
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Principal Investlgator(s): Thurston, J. (i)

Co-Investigator(s): Izquierdo, M. (Project Engineer) (2)

Affiliation(s): (i) During STS-025: Canyon Hills High School,

Texas, Currently: Unknown; (2) E1 Paso Natural Gas, E1 Paso,

Texas

Experiment Origin: USA

Mission: STS Launch #18, STS-025 (STS 51-G, Discovery)

Launch Date/Expt. Date: Not Applicable. (This experiment could

not be readied in time for integration in to the GAS canister

prior to the flight.)

Launched From: NASA Kennedy Space Center, Florida

Payload Type: High School Student Experiment

NASA Get Away Special (GAS) canister G-034
Volume of Canister: 5.0 cubic feet

Location of Canister: STS Payload Bay

Primary Developer/Sponsor of G-034: Texas High Schools (Ysleta

and E1 Paso Districts)/Dickshire Coors, E1 Paso, Texas

Processing Facility: Dynamic Random Access Memory (DRAM) Chips

which consisted of thousands of transistors

Builder of Processing Facility: Japanese and American chips were

to be employed. The specific brands were unspecified.

Experiment:

Performance of Dynamic Random Access Memory (DRAM) Chip in Space

Environment

"...[Dynamic Random Access Memory] DRAMS consist of thousands of

transistors in which the gates can be charged to a certain volt-

age level. Because the charge on the gates leaks away slowly,

the charges have to be read and restored to their proper level

periodically. This process is known as refresh. If refresh is

not done within a certain time limit, the charge in the gates

will have leaked away and any data stored in the chips will be

lost." (I, p. 67)

This investigation was to be one of thirteen experiments housed

within the G-034 Get Away Special canister on STS-025. (Three

other of these thirteen investigations are applicable to this

data base (see Casarez, STS-025 (Chpater 18); Foster, STS-025

(Chapter 2); M. Moore, STS-025 (Chapter 8)).) The specific ob-

jective of this experiment was to determine if "...conditions in

space such as cosmic rays and weightlessness affect the perfor-

mance of computer chips." (i, p. 66)

In order to achieve this objective, space performance of Dynamic

Random Access Memory (DRAM) chips was to be compared with Earth

DRAM chip performance. Reportedly, differences in the perfor-

mance of Japanese-manufactured and American-manufactured chips
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were to be evaluated from both the Earth and space experiments.

The expected inflight procedure was described as follows:

"Testing of the DRAMs will be done by using a microprocessor to

write a test pattern to the chips and then count any errors that
occur. A 2K EEPROM will be used to record the number of errors

that occur. This testing will be done with different amounts of

time between refresh cycles to determine how fast the charge is

leaking away from the gates." (I, p. 67)

Reference (4) reported that this experiment was not ready for

launch at the planned integration time and was thus was not in-

cluded in the canister.

No further information concerning this experiment could be lo-
cated.

Key Words: Technological Experiments, Computer Chip Performance,

Cosmic Rays, Transistors, Computer Data Storage, Electric Field

Number of Samples: unspecified

Sample Materials: Japanese and American Dynamic Random Access

Memory (DRAM) Chips

Container Materials: not applicable

Experiment/Material Applications:

Investigations of this type should contribute information to the

expected performance of computer chips/computer systems in the

space environment.

References/Applicable Publications:

(i) E1 Paso & Ysleta Schools Get Away Special Payload #34. In

Goddard Space Flight Center's 1984 Get Away Special

Experimenter's Symposium, NASA CP-2324, August 1-2, 1984, pp. 59-

68. (preflight)

(2) Cargo Systems Manual: GAS Annex for STS 51-G, JSC 17645 51-G,

Rev. A, March 20, 1985. (preflight; very short description)

(3) NASA Space Shuttle Mission 51-G Press Kit,

(very short description; preflight)

June 1985, p. 20.
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(4) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11, October 2, 1987. (Get Away Special canister mission

history)

(5) G-034 Payload Accommodations Requirements, NASA Goddard Space

Flight Center, 1985.

Contact(s):

Mike Izquierdo

E1 Paso Natural Gas

PO Box 1492

E1 Paso, TX 79978
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Principal Investigator(s): Alltech Associates, Inc. (1)

Co-Investigator(s): Anderson, J. (Sponsor) (2), Whitten, F.

(Technical Manager) (3)

Affiliation(s): (1) Deerfield, Illinois; (2) Alltech Associates,

Deerfield, Illinois; (3) National Aeronautics and Space Ad-

ministration (NASA), Goddard Space Flight Center (GSFC), Green-

belt, Maryland

Experiment Origin: USA

Mission: STS Launch #24, STS-032 (STS 61-C, Columbia)

Launch Date/Expt. Date: January 1986

Launched From: NASA Kennedy Space Center, Florida

Payload Type: NASA Get Away Special (GAS) Canister G-446

Volume of Canister: 2.5 cubic feet

Location of Canister: STS Payload Bay, (Standard NASA Bridge

Carrier System)

Primary Developer/Sponsor of G-446: Alltech Associates, Inc.,

Deerfield, Illinois

Processing Facility: High Performance Liquid Chromatography

(HPLC) analytical column manufacturing system

Builder of Processing Facility: Designed by Alltech Associates of

Waukegan, Illinois

Experiment:

Hiqh Performance Liquid Chromatoqraphy (HPLC)

Few details of this STS Getaway Special Canister experiment could

be located at this time. The STS 61-C press kit, which was

released prior to the launch of the STS 61-C mission, briefly

described the experiment objective and equipment setup. "The

purpose of this experiment is to learn what effect gravity has on

[the] particle dispersion of packing material in High Performance

Liquid Chromatography (HPLC) analytical columns. Contained in a

2.5-ft., 60-1b. canister, the payload consists of an automated

HPLC analytical column manufacturing system that will produce

HPLC columns in microgravity. Post landing, the samples will be

returned to Alltech Associates, Inc. for analysis." (i, p. 17)

Very little post-flight information could be located which

described experimental results. Reference (2) reported that

"...this experiment manufactured High Performance Liquid

Chromatography Analytical Columns in microgravity. Used for

chemical analysis, the columns allow the separation of a chemical

mixture into its components, so the chemicals can be quantified.

When manufactured on earth, the columns are not as efficient as

theoretically possible, because minute particles with which they

are packed do not settle uniformly. The experiment's designers

expected that by reducing gravity, a more efficient column could

be produced." (2, p. 35)
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No further information concerning this experiment could be lo-
cated.

Key Words: Technological Experiments, High Performance Liquid

Chromatography, Particle Dispersion, Packing Material, Particle

Separation, Separation of Components

Number of Samples: unknown

Sample Materials: unknown

Container Materials: unknown

Experiment/Material Applications:

Although it was stated that "Fields as varied as medicine, law

enforcement, and petroleum processing could benefit from the

results of G446," (2, p. 35) such benefits were not further

detailed. It was expected that low-gravity production of the

columns would result in a more uniform separation of the mixtures
of interest.

References/Applicable Publications:

(i) NASA Space Shuttle Mission 61-C Press Kit, December 1985, p.

17. (very brief preflight summary)

(2) Get Away Special... the first ten years. Published by God-

dard Space Flight Center, Special Payloads Division. The NASA

GAS Team, 1989, p. 35. (does not discuss post-flight results)

(3) Ridenoure, R.: GAS Mission Summary and Technical Reference

Data Base. Ecliptic Astronautics Co., Technical Report #EAC-TR-

RWR 87-11 October 2, 1987. (Get Away Special Canister mission

history)

Contact(s):

Jim Anderson

Alltech Associates

2051 Waukegan Road

Deerfield, IL 60015
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Principal Investigator(s)-" Hebert, D. J. (1)

Co-Investigator(s) : Lafferty, T. (Engineer and Science

Representative) (2)

Affiliation(s) : (1) Pre STS-032: Appleton High School West, Ap-

pleton, Wisconsin, During STS-032: US Naval Academy, Annapolis,

MD, Currently: Physician, Regimental Aid, Kaneohe Bay, Hawaii;

(2) James River Paper Corporation, Neenah, Wisconsin

Experiment Origin: USA

Mission: STS Launch #24, STS-032 (STS 61-C, Columbia)

Launch Date/Expt. Date: January 1986

Launched From: NASA Kennedy Space Center, Florida

Payload Type: High School Student Experiment, Shuttle Student In-

volvement Program (SSIP), STS Middeck Experiment

Processing Facility: Nine acrylic cylinders in which a

fiber/slurry mixture was forced through a screen by a hand

operated piston
Builder of Processing Facility: Designed by James River Paper

Corporation, Neenah, Wisconsin; Built by Metal Products, Ap-

pleton, Wisconsin

Experiment:

A Study of Paper Fiber Formation (SE83-4)

During the formation of paper on Earth, the distribution of in-

dividual fibers in the slurry/fiber mixture and paper product is

significantly affected by gravity-dependent forces. Thus,

knowledge about the actual gravitational effects on fibers is

valuable. Space-produced paper should exhibit more uniform fiber

distribution than Earth-produced paper.

The specific objective of this STS high school student experiment

was to study the reduced gravity formation of cellulose fibers in

a fiber mat. This objective was to be achieved by examining

paper forming fibers (1) as they are suspended in solution prior

to distribution on a paper forming screen, and (2) after they are

distributed on the paper forming screen.

Nine paper making apparatuses were prepared for the mission. All

nine experiments were the same except for one variable. This

variable was the addition of polymers to the fiber/slurry solu-

tion which promote or hinder fiber arrangements: the addition of

anionic polymer increases floccing; the addition of cationic

polymer prevents floccing.

Each apparatus was equipped with a __Dinch diameter cylindrical

tank made of clear acrylic Plexiglas "_m (total slurry volume .750

liter). Each of the acrylic tanks was fitted with a i00 mesh

screen at one end of the cylinder, and equipped with a hand-
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operated piston at the opposite end of the cylinder.

Prior to the mission, (i) tanks 1,2, and 3 were filled with a

"control" fiber/slurry mixture (no chemical additives) containing

.125% short fibers, .125% long fibers, and 99.9975% water, (2)

tanks 4, 5, and 6 were filled with the control fiber/slurry mix-

ture plus cationic polymer (500 parts cationic polymer per mil-
lion parts of water), and (3) tanks 7, 8, and 9 were filled with

the control fiber/slurry mixture plus anionic polymer (500 parts

anionic polymer per million parts water). <Note: See the
materials section below for additional information.>

During the mission, Mission Specialist Steve Hawley "...agitated

the fiber slurry by rotating the cylinder apparatus and then

while holding the unit static for 30 seconds, observed and

photographed the fibers as they drifted in the aqueous solution."

(2, p. 32) He then depressed the piston forcing the fiber/slurry

through the cylinder and distributed the paper fibers on the

screen at the opposite end. The liquid pushed through the screen
exited the cylinder through an external tube behind the screen

and was routed to the opposite end of the tank where it re-

entered the cylinder chamber behind the piston. The fibers

deposited into the screen were retained by the piston. The

cylinders were then sealed until they could be opened at the

James River Paper Company. (Each paper-forming apparatus was a

closed sealable system, safe for operation in the shuttle.) Once

the cylinders were returned to James River, the the screens were

removed from the cylinders and dried.

While the experiments were being performed in space, nine identi-

cal units at James River were employed to produce nine "Earth

control" sheets. The sheets were then tested and compared with
the space paper.

Non-destructive physical testing at James River (Neenah Technical

Center) and the Institute of Paper Chemistry (Appleton,

Wisconsin) was performed in order to preserve the samples. "The
basis weight, thickness and Sheffield smoothness were measured

using standard TAPPI procedures with the apparent density calcu-

lated from basis weight and thickness. Strength was evaluated by

means of Sonic Modulus Testing at the Institute of Paper

Chemistry. This device measures sound-wave velocities traveling

through the sample. The square of the measured velocity,

km_/sec "_, can then be correlated with sheet strength
properties ....

"It was necessary to select a formation measurement device which

could be used on small sheets (4-inch diameter) to indicate dif-

ferences between macro-and micro-formation. The M/K Systems On-

Line Formation Tester was selected. This instrument calculates
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an average of I0,000 micro-opacity measurements in a 15-second

test period. The 'formation number' is the voltage proportional

to the mean peak-to-peak variation in light transmission during

the 15-second test period ....

"These formation test results show a statistically significant

difference between the space made and the Earth-made sheets. All

space-made sheets had lower (better) formation values than their

Earth-made counterparts. This difference increased when the

testing speed increased suggesting a better micro-formation for

the space-made paper. This difference can be seen visually.

"Equal values in the absolute strength of space-made and Earth-

made papers support the concept of relatively equal macro-

formation. A lower strength standard deviation in the space-made

paper supports the observation of improved micro-formation." (3,

p. 7)

<Note: No discussion concerning the effect of the cationic and

anionic polymers was presented. However, a table presented in

Reference (3) appears to indicate that (in general) both in space

and on Earth, the paper formed from a slurry with no additives

exhibited the lowest (best) paper formation values (see Reference

(3), Table II, page 7).>

It was concluded that the space-produced, hand-made sheets can

have superior micro-formation compared to Earth-formed papers.

It was reported, however, that it is not so clear "...as to why

differences in formation exist or which factors may be contribut-

ing to the observed effects. Formation studies as reported in

the literature generally have involved machine made papers and

have not been concerned with the presence or absence of gravita-

tional forces during the sheet forming process .... "

"A concise explanation was offered by Van den Akker... who ob-
served that 'not all fibers are of the same apparent density. In

addition to natural variation within one species, there are dif-

ferences between species and different densities result also from

air entrapment within the lumen. In the Earth-made paper, the

lighter fibers have a tendency to rise and the heavier ones to
sink. This relative movement can cause minor fiber entanglement

and some loss in micro-formation. This phenomena would be

reduced in space since gravitational forces would not effect

relative movement of fibers of different density'. This is sup-

ported by an earlier experiment in which the absence of hydros-

tatic pressure in zero-gravity accounted for reduced buoyancy

forces, resulting in the elimination of natural convection and

sedimentation effects .... <Note: This "earlier experiment" was

not identified.> Therefore, it appears that eliminating the

relative movement between the fibers has effectively reduced the
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flocculating rate or tendency in the fiber system such that im-
proved formation could be both instrumentally measured and
visually observed." (3, pp. 7-8)

It was recommended that "Researchers who want to produce more
uniform handsheets need to minimize differences in fiber density
and fiber sink rates o_rr form the sheet in the shortest practical
time after agitation stops o_£rcontinue agitation during the for-
mation process." (3, p. 8)

<Note: No post-flight discussion of the fiber distribution within
the slurry prior to piston depression could be located.>

Key Words: Technological Experiments, Paper Formation, Fibers,
Fiber Dispersions, Particle Dispersion, Particle Distribution,
Suspension of Particles, Homogeneous Dispersion, Sedimentation,
Aqueous Solutions, Slurry Solutions, Polymers, Piston System,
Liquid Transfer, Liquid Mixing, Sample Rotation, Material
Strength, Hydrostatic Pressure, Buoyancy Forces, Density Dif-
ference, Contained Fluids, Liquid Reservoir

Number of Samples: nine

Sample Materials: Reference (2) reported the following: (i)

tanks i, 2, and 3 were filled with a "control" fiber/slurry mix-

ture (no chemical additives) containing 0.125% short fibers,

0.125% long fibers, and 99.9975% water; (2) tanks 4, 5, and 6

were filled with the control fiber/slurry mixture plus cationic

polymer (500 parts cationic polymer per million parts of water);

and (3) tanks 7, 8, and 9 were filled with the control

fiber/slurry mixture plus anionic polymer (500 parts anionic

polymer per million parts water). Reference (3) reported the

following: Three of the paper-forming apparatuses contained I/i

blend of bleached, unrefined hardwood kraft pulp and bleached,

unrefined softwood kraft pulp uniformly mixed and diluted to

0.07% consistency. Three of paper forming apparatuses employed

this diluted blend plus 50 ppm of cationic polymer, and three of

the paper-forming apparatuses contained the diluted blend plus 50

ppm of anionic polymer.

Container Materials: Plexiglas TM acrylic
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Experiment/Material Applications:

During the formation of paper on Earth, heavier fibers separate

from lighter fibers, thus affecting the distribution of the

fibers in the final paper. If these fibers could be evenly dis-

tributed, the paper may be of extremely high printing quality.

Space-produced paper should exhibit more uniform fiber distribu-

tion than Earth-produced paper.

References/Applicable Publications:

(i) Space Shuttle Mission 61-C. NASA Press Kit, December 1985,

p. 20. (preflight)

(2) Lafferty, T.: Papermaking in Space: Technology Can't Get Any

Higher Than This! PIMA (The Magazine for Papermaking

Professionals), February 1986, pp. 30-33. (post-flight)

(3) Hebert, D., Lafferty, T., and Thorp, B.: Space-Formed Paper

Properties. Document received from Co-Investigator T. Lafferty,

December 1993, i0 pp. (post-flight)

(4) Input received from Co-Investigator, T. Lafferty, 1993.

(5) Study of Paper Formation in Microgravity. In Shuttle Student

Involvement Program (SSIP) Final Reports of Experiments Flown,

NASA/JSC Internal Note, JSC 24005, October 20, 1989.

Contact(s):

Dr. Dan Hebert

Regimental Surgeon

3d Marines

Marine Corp Base Hawaii

(MCB Hawaii)

Lameohe Bay, HI 96734

John Jackson

SP2

Shuttle Student Involvement Program

Johnson Space Center
2101 NASA Road 1

Houston, TX 77058

Terry Lafferty

James River Paper Company

1915 Marathon Avenue

P.O. Box 899

Neenah, WI 54957-0899
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